Plant Ecology and Evolution 143(2): 148-159, doi: 10.5091/plecevo.2010.437
Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae
expand article infoSven Buerki, Porter P. Lowry II, Nadir Alvarez, Sylvain G. Razafimandimbison, Philippe Küpfer, Martin W. Callmander
‡ Missouri Botanical Garden, St. Louis, United States of America
Open Access
Abstract
Background and aims – Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly ¾ of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods – Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz. a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results – Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion – To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.
Keywords
ACERACEAE; HARPULLIEAE; HIPPOCASTANACEAE; MOLECULAR PHYLOGENY; NEW FAMILY; SAPINDACEAE; XANTHOCERACEAE; XANTHOCERAS