Plant Ecology and Evolution 154(3): 432-446, doi: 10.5091/plecevo.2021.1845
Is chiropterophily an evolutionary dead end? A phylogenetic test in the pantropical genus Parkia (Leguminosae, Caesalpinioideae, mimosoid clade)
expand article infoLorena Conceição Oliveira, Doriane Picanço Rodrigues§, Helen C. Fortune Hopkins|, Guthieri Teixeira Colombo, Michael John Hopkins#
‡ Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Botânica, Manaus, Brazil§ Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Manaus, Brazil| Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom¶ Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ecologia, Manaus, Brazil# INPA - Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Brazil
Open Access

Background and aims – Pollination systems often reflect adaptations to specific groups of pollinators, and these morphological specialisations have been important in the diversification of the angiosperms. Here, we study the evolution of the capitulum and pollination system in the pantropical genus Parkia, which comprises 35 species of trees distributed largely in the forests of South and Central America, Africa, Madagascar, and the Indo-Pacific. The flowers are grouped into capitula that are composed of one, two, or three distinct morphological types, and are principally pollinated either by insects or by bats.

Material and methods – Using BEAST, we estimated the ages of nodes in a phylogeny based on four chloroplast regions (matK, trnL, psbA-trnH, and rps16-trnQ) and the nuclear region ITS/18S/26S. This analysis also enabled us to reconstruct the ancestral state of the capitulum and hence infer the ancestral pollination system. Euclidean distance-based cluster analysis was performed to determine which characters are consistently related to a specific pollination system.

Key results – Our results indicate that the ancestral capitulum in the genus had three types of flowers and a morphology associated with bat-pollination in both the Paleotropics and Neotropics. In one derived Neotropical clade, the number of floral types in each capitulum was reduced to two (capitulum also bat-pollinated) or one (insect-pollinated). Thus, entomophily, as seen in some Neotropical species of Parkia, has been derived from a bat-pollinated ancestor. Cluster analysis showed that the floral characters were mostly consistent with pollination systems.

Conclusion – Chiropterophily is not an evolutionary dead end in Parkia because during the evolutionary history of the genus there has been at least one transition to entomophily. Parkia provides a unique example of evolutionary transitions from chiropterophily to entomophily in a pantropical genus of trees.

chiropterophily, entomophily, evolutionary dead end, Fabaceae, legumes, pantropical


  • Acharya P.R., Racey P.A., McNeil D., Sotthibandhu S. & Bumrungsri S. 2015. Timing of cave emergence and return in the dawn bat (Eonycteris spelaea, Chiroptera: Pteropodidae) in Southern Thailand. Mammal Study 40: 47–52.
  • Almeida F.C., Giannini N.P., DeSalle R. & Simmons N.B. 2009. The phylogenetic relationships of cynopterine fruit bats (Chiroptera: Pteropodidae: Cynopterinae). Molecular Phylogenetics and Evolution 53(3): 772–783.
  • Arita H.T., Vargas-Barón J. & Villalobos F. 2014. Latitudinal gradients of genus richness and endemism and the diversification of New World bats. Ecography 37: 1024–1033.
  • Armbruster W.S. 1992. Phylogeny and the evolution of plant-animal interactions: detailed cladograms and knowledge of ecology allow testing of new hypotheses about evolution. BioScience 42: 12–20.
  • Armbruster W.S. 1996. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). In: Lloyd D.G. & Barrett S.C.H. (eds) Floral biology: studies on floral evolution in animal-pollinated plants: 241–272. Chapman & Hall, New York.
  • Armbruster W.S., Lee J. & Baldwin B.G. 2010. Macroevolutionary patterns of defense and pollination in Dalechampia vines: adaptation, exaptation, and evolutionary novelty. Proceedings of the National Academy of Sciences of the United States of America 106: 18085–18090.
  • Ashworth L., Aguilar R., Martén-Rodríguez S., et al. 2015. Pollination syndromes: a global pattern of convergent evolution driven by the most effective pollinator. In: Pontarotti P. (ed.) Evolutionary biology: biodiversification from genotype to phenotype: 203–224. Springer, Switzerland.
  • Baker H.G. & Harris B.J. 1957. The pollination of Parkia by bats and its attendant evolutionary problems. Evolution 11: 449–460.
  • Brito V.L., Fendrich T.G., Smidt E.C., Varassin I.G. & Goldenberg R. 2016. Shifts from specialised to generalised pollination systems in Miconieae (Melastomataceae) and their relation with anther morphology and seed number. Plant Biology 18(4): 585–593.
  • Bruneau A., Mercure M., Lewis G.P. & Herendeen P.S. 2008. Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86: 697–718.
  • Bumrungsri S., Harbit A., Benzie C., Carmouche K., Sridith K. & Racey P. 2008. The pollination ecology of two species of Parkia (Mimosaceae) in southern Thailand. Journal of Tropical Ecology 24: 467–475.
  • Carvalho C.T. 1960. Das visitas de morcegos as flores (Mammalia, Chiroptera). Anais da Academia Brasileira de Ciências 32(3/4): 359–377.
  • Chaves S.R. 2015. Biologia floral e polinização de Parkia ulei (Harms) Kuhlm. e Parkia multijuga Benth. (Fabaceae, Mimosoideae). MSc thesis, Instituto Nacional de Pesquisas da Amazonia, Manaus, Brazil.
  • Danser B.H. 1929. Bestuiving van Parkia door vleermuizen. Tropische Natuur 18: 118–119.
  • Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.
  • Datzmann T., von Helversen O. & Mayer F. 2010. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology 10: 165.
  • Delgado-Salinas A., Bibler R. & Lavin M. 2006. Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Systematic Botany 31: 779–791.
  • Dick C.W., Bermingham E., Lemes M.R. & Gribel R. 2007. Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Molecular Ecology 16(14): 3039–3049.
  • Dobat K. & Peikert-Holle T. 1985. Bluten und fledermause. Verlag Waldemar Kramer, Frankfurt am Main.
  • Docters van Leeuwen W.M. 1933. Bestuiving van Parkia door vleermuizen en bijen. Tropische Natuur 22: 199–200.
  • Docters van Leeuwen W.M. 1938. Observations about the biology of tropical flowers. Annales du Jardin botanique de Buitenzorg 48: 27–68.
  • Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  • Drummond A.J. & Rambaut A. 2010. TreeAnnotator v.1.8.0. Available from [accessed 16 Mar. 2020].
  • Duchen P. & Renner S.S. 2010. The evolution of Cayaponia (Cucurbitaceae): repeated shifts from bat to bee pollination and long-distance dispersal to Africa 2–5 million years ago. American Journal of Botany 97(7): 1129–1141.
  • Faegri K. & van der Pijl L. 1966. The principles of pollination ecology. Pergamon Press, Oxford.
  • Faegri K. & van der Pijl L. 1979. The principles of pollination ecology. Third edition. Pergamon, Oxford.
  • Fenster C.B., Reynolds R.J., Williams C.W., Makowsky R. & Dudash M.R. 2015. Quantifying hummingbird preference for floral trait combinations: the role of selection on trait interactions in the evolution of pollination syndromes. Evolution 69: 1113–1127.
  • Ferreira P. A. 2008. “Síndromes intermediárias de polinização” e suas implicações ecológicas: o caso de Paliavana tenuiflora Mansf. (Gesneriaceae: Sinningeae) em Mucugê - Chapada Diamantina – Bahia. MSc thesis, Universidade Federal da Bahia, Brazil.
  • Fischer E.A. 2000. Polinização por morcegos Glossophaginae versus Phyllostominae em floresta de terra firme na Amazônia central. PhD thesis, Universidade Estadual de Campinas, Brazil.
  • Fleming T.H., Geiselman C. & Kress W.J. 2009. The evolution of bat pollination: a phylogenetic perspective. Annals of Botany 104: 1017–1043.
  • Giannini N.P. & Velazco P.M. 2020. Phylogeny, fossils, and biogeography: the evolutionary history of superfamily Noctilionoidea. In: Fleming T.H., Dávalos L.M. & Mello M.A.R. (eds) Phyllostomid bats: 25–42. University of Chicago Press, Chicago.
  • Gómez J.M., Perfectti F. & Klingenberg C.P. 2014. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 20130257.
  • Grünmeier R. 1990. Pollination by bats and non-flying mammals of the African tree Parkia bicolor (Mimosaceae). Memoirs of the New York Botanical Garden 55: 83–104.
  • Heithaus E.R. 1979. Flower visitation records and resource overlap of bees and wasps in northwest Costa Rica. Brenesia 16: 9–52.
  • Hopkins H.C.F. 1983. The taxonomy, reproductive biology, and economic potential of Parkia (Leguminosae: Mimosoideae) in Africa and Madagascar. Botanical Journal of the Linnean Society 87: 135–167.
  • Hopkins H.C.F. 1984. Floral biology and pollination ecology of the neotropical species of Parkia. Journal of Ecology 72: 1–23.
  • Hopkins H.C.F. 1986. Parkia (Leguminosae: Mimosoideae). Flora Neotropica vol. 43. New York Botanical Garden Press, New York.
  • Hopkins H.C.F. 1998. Bat pollination and taxonomy in Parkia (Leguminosae: Mimosoideae). In: Hopkins H.C.F., Huxley C.R., Pannell C.M., Prance G.T. & White F. (eds) The biological monograph. The importance of field studies and functional syndromes for taxonomy and evolution of tropical plants: 31–55. Royal Botanic Gardens, Kew, Richmond.
  • Hopkins H.C.F. 2000a. Parkia paya (Leguminosae: Mimosoideae), a new species from swamp forest and notes on variation in Parkia speciosa sensu lato in Malesia. Kew Bulletin 55: 123–132.
  • Hopkins H.C.F. 2000b. Parkia barnebyana (Leguminosae: Mimosoideae), a new species from Venezuelan Guayana. Kew Bulletin 55(1): 133–136.
  • Hopkins H.C.F. 2000c. Parkia lutea (Leguminosae, Mimosoideae), a new species from Amazonian Brazil. Adansonia 22(1): 139–144.
  • Hopkins M.J.G., Hopkins H.C.F. & Sothers C.A. 2000. Nocturnal pollination of Parkia velutina by Megalopta bees in Amazonia and its possible significance in the evolution of chiropterophily. Journal of Tropical Ecology 16: 733–746.
  • Johnson L.A. & Soltis D.E. 1994. MatK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Systematic Botany 19: 143–156.
  • Jones K.E., Purvis A., MacLarnon A., Bininda-Emonds O.R.P. & Simmons N.B. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews 77: 223–259.
  • Jones K.E., Bininda-Emonds O.R.P. & Gittleman J.L. 2005. Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59: 2243–2255.
  • Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
  • Kay K., Whittall J.B. & Hodges S.A. 2006. A survey of nrITS substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evolutionary Biology 6: 36.
  • Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0.26. Molecular Biology Evolution 33: 1870–1874.
  • Lassen K.M., Ræbild A., Hansen H., Brødsgaard C.J. & Eriksen E.N. 2012. Bats and bees are pollinating Parkia biglobosa in The Gambia. Agroforestry Systems 85: 465–475.
  • Lavin M., Herendeen P.S. & Wojciechowski M.F. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology 54: 575–594.
  • Linder H.P., Dlamini T., Henning J. & Verboom G.A. 2006. The evolutionary history of Melianthus (Melianthaceae). American Journal of Botany 93: 1052–1064.
  • LPWG 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the Legume Phylogeny Working Group (LPWG). Taxon 66: 44–77.
  • Luckow M. 2005. Tribe Mimoseae. In: Lewis G.P., Schrire B., Mackinder B. & Lock M. (eds) Legumes of the world: 163–183. Royal Botanic Gardens, Kew, Richmond.
  • Luckow M. & Hopkins H.C.F. 1995. A cladistic analysis of Parkia (Leguminosae: Mimosoideae). American Journal of Botany 82: 1300–1320.
  • Luckow M., Miller J., Murphy D. & Livshultz L. 2003. A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data. In: Klitgaard B. & Bruneau A. (eds) Advances in legume systematics: 197–220. Royal Botanic Gardens, Kew, Richmond.
  • Moura T.M., Vatanparast M., Tozzi A.M., et al. 2016. A molecular phylogeny and new infrageneric classification of Mucuna Adans. (Leguminosae-Papilionoideae) including insights from morphology and hypotheses about biogeography. International Journal of Plant Sciences 177: 76–89.
  • Muchhala N. 2003. Exploring the boundary between pollination syndromes: bats and hummingbirds as pollinators of Burmeistera cyclostigmata and B. Tenuiflora (Campanulaceae). Oecologia 134: 373–380.
  • Muchhala N. & Thomson J.D. 2010. Fur versus feathers: pollen delivery by bats and hummingbirds and consequences for pollen production. The American Naturalist 125(6): 717–726.
  • Ollerton J., Killick A., Lamborn E., Watts S.S. & Whiston M. 2007. Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56: 717–728.
  • Ollerton J., Alarco R., Waser N.M., et al. 2009. A global test of the pollination syndrome hypothesis. Annals of Botany 103: 1471–1480.
  • Ollerton J., Rech A.R., Waser N.M. & Price M.V. 2015. Using the literature to test pollination syndromes – Some methodological cautions. Journal of Pollination Ecology 16(10): 64–71.
  • Oliveira L.C. 2015. Filogenia de Parkia R.Br. (Leguminosae: Mimosoideae) com base em sequências de DNA de cloroplasto. MSc thesis, Instituto Nacional de Pesquisas da Amazonia, Brazil.
  • Oliveira L.C. 2020. Sistemática e Biogeografia de Parkia (Leguminosae, Caesalpinoideae, clado mimosoide). PhD thesis, Instituto Nacional de Pesquisas da Amazonia, Brazil.
  • Oliveira L.C., Rodrigues D.P. & Hopkins M.J.G. 2017. Comparison of six DNA extraction protocols to molecular analysis in species of Fabaceae. Scientia Amazonia 6: 38–45.
  • Oliveira L.C., Rodrigues D.P., Hopkins H.C.F., Lewis G.P. & Hopkins M.J.G. 2021. Phylogeny and historical biogeography of the pantropical genus Parkia (Leguminosae, Caesalpinioideae, mimosoid clade). Molecular Phylogenetics and Evolution 163: 107219.
  • Pérez F., Arroyo M.T.K., Medel R. & Hershkovitz M.A. 2006. Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). American Journal of Botany 93(7): 1029–1038.
  • Piechowski D. 2007. Bat visits and changes in floral nectar during anthesis of Parkia pendula (Mimosaceae). Phyton 46: 203–204.
  • Rambaut A. 2014. FigTree. Version 1.4.2. Available from [accessed 16 Mar. 2020].
  • Rambaut A. & Drummond A.J. 2009. Tracer. Version 1.6. Available from [accessed 16 Mar. 2020].
  • R Core Team 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from [accessed 1 Jan. 2020].
  • Ribeiro P.G., Luckow M., Lewis G.P., et al. 2018. Lachesiodendron, a new monospecific genus segregated from Piptadenia (Leguminosae: Caesalpinioideae: mimosoid clade): evidence from morphology and molecules. Taxon 67: 37–54.
  • Rojas D., Vale Á., Ferrero V. & Navarro L. 2011. When did plants become important to leaf-nosed bats? Diversification of feeding habits in the family Phyllostomidae. Molecular Ecology 20(10): 2217–2228.
  • Rojas D., Warsi O.M. & Dávalos L.M. 2016. Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant Neotropical diversity. Systematic Biology 65: 432–448.
  • Rosas-Guerrero V., Quesada M. & Armbruster W.S. 2011. Influence of pollination specialization and breeding system on floral integration and phenotypic variation in Ipomoea. Evolution 65: 350–364.
  • Rosas-Guerrero V., Aguilar R., Martén-Rodríguez S., et al. 2014. A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecology Letters 17: 388–400.
  • Sang T., Crawford D.J. & Stuessy T.F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120–1136.
  • SanMartin-Gajardo I. & Sazima M. 2005. Chiropterophily in Sinningieae (Gesneriaceae): Sinningia brasiliensis and Paliavana prasinata are bat pollinated, but P. sericiflora is not. Not yet? Annals of Botany 95: 1097–1103.
  • Sazima M., Sazima I. & Buzato S. 1994. Nectar by day and night: Syphocampylus sulfureus (Lobeliaceae) pollinated by hummingbirds and bats. Plant Systematics and Evolution 191: 237–246.
  • Shaw J., Lickey E.B., Schilling E.E. & Small R.L. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275–288.
  • Simon M.F., Grether R., Queiroz L.P. de, Skema C., Pennington R.T. & Hughes C.E. 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences of the United States of America 106: 20359–20364.
  • Simon M.F., Pastore J.F.B., Souza A.F., et al. 2016. Molecular phylogeny of Stryphnodendron (Mimosoideae, Leguminosae) and generic delimitations in the Piptadenia group. International Journal of Plant Sciences 177: 44–59.
  • Singaravelan N., Raja R. & Marimuthu G. 2007. Nectar feeding strategies of Pteropodid bats on Parkia biglandulosa: the influence of angular variations in nectar rings. Proceedings, Indian National Science Academy 73: 127–135.
  • Stebbins G.L. 1974. Flowering plants. Evolution above the species level. Harvard University Press, Cambridge, MA.
  • Taberlet P., Gielly L., Pautou G. & Bouvet J. 1991. Universal primers for amplification of three no-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109.
  • Tate J.A. & Simpson B.S. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany 28: 723–737.
  • Teeling E.C., Springer M.S., Madsen O., Bates P., O’Brien S.J. & Murphy W.J. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580–584.
  • van Heurn W.C. 1929. Bestuiving van Parkia door vleermuizen. Tropische Natuur 18: 140.
  • Vogel S. 1969. Chiropterophilie in der neotropischen Flora Neue Mitteilungen III. Flora oder Allgemeine botanische Zeitung. Abt. B, Morphologie und Geobotanik 158(4–5): 289–323.
  • Vololona J., Ramavovololona P., Lalarivoniaina O.S.N. & Goodman S.M. 2020. Fleurs visitées par Rousettus madagascariensis G. Grandidier, 1928 (Chiroptera: Pteropodidae) dans la Réserve Spéciale d’Ankarana, Madagascar. Bulletin de la Société Zoologique de France 145: 49–67.
  • Waser N.M., Chittka L., Price M.V., Williams N.M. & Ollerton J. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 1043–1060.
  • Whittall J.B. & Hodges S.A. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447(7145): 706–709.
  • Willmer P. 2011. Pollination and floral ecology. Princeton University Press, Princeton.
  • Zhang L., Barrett S.C.H., Gao J.Y., et al. 2005. Predicting mating patterns from pollination syndromes: the case of “sapromyiophily” in Tacca chantrieri (Taccaceae). American Journal of Botany 92: 517–524.