Plant Ecology and Evolution 154(3): 376-390, doi: 10.5091/plecevo.2021.1879
The structure of Leguminosae-Detarioideae dominant rain forest in Korup National Park, Cameroon
expand article infoXander van der burgt, David M. Newbery§, Sylvanos Njibili|
‡ Royal Botanic Gardens, Kew, United Kingdom§ Vegetation Ecology Section, Institute of Plant Sciences, University of Bern, Bern, Switzerland| University of Bern Korup Project, c/o Korup National Park, Mundemba, Cameroon
Open Access
Abstract

Background and aims – We studied a cluster of trees in the Leguminosae subfamily Detarioideae, to: (1) determine the size, structure, and tree species composition of this cluster; (2) map the size, shape, and structure of groups of individual Detarioideae tree species in the cluster.

Location – Lowland rain forest in southern Korup National Park, in the Southwest Region of Cameroon.

Material and methods – Trees in permanent plots were recorded using standard plot enumeration techniques. Outside plots, single-species tree groups were recorded by a rapid technique. From this data, detailed maps of groups of trees were prepared.

Key results – Detarioideae tree species occur co-dominant in a cluster of at least 32 km2 with an irregular shape. The cluster contained at least 42 Detarioideae tree species; at least 29 of these occurred in groups ranging in size from 50 to 4000 m across, depending on the species. Groups usually had circular shapes, caused by ballistic seed dispersal. In a group, trees were always mixed with trees of several other Detarioideae species. Every area within the cluster contained a specific set of Detarioideae species. The percentage of Detarioideae trees ≥ 60 cm stem diameter on 50 ha was up to 76% in Detarioideae-rich forest, to 6% in Detarioideae-poor forest. Of all trees in the centre of the cluster, 2.8% belonged to pioneer forest species, which indicates that disturbance levels were low during the past generations of trees.

Discussion – The forests in the Detarioideae cluster have not been subject to substantial human and natural impacts in historic or prehistoric times. Such forests are exceptional in Africa. Detarioideae clusters may indicate glacial age forest refuges, especially clusters that contain both many different Detarioideae species and some Detarioideae species endemic to the cluster.

Keywords
ballistic seed dispersal, forest refuge, glacial age, Microberlinia, monodominant, Tetraberlinia, transient dominant

References

  • African Plant Database 2021. Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria, version 3.4.0. Available from https://www.ville-ge.ch/musinfo/bd/cjb/africa/recherche.php [accessed 13 Sep. 2021].
  • Alexander I.J. 1989. Systematics and ecology of ectomycorrhizal legumes. In: Stirton C.H. & Zarucchi J.L. (eds) Advances in legume biology. Monographs in Systematic Botany Missouri Botanical Garden 29: 607–624. Missouri Botanical Garden, St Louis.
  • Aubréville A. 1938. La forêt coloniale: les forêts de l’Afrique occidentale française. Académie des Sciences Coloniales, Annales IX. Société d’Éditions Géographiques, Maritimes et Coloniales, Paris.
  • Aubréville A. 1957. Echos du Congo Belge. Bois et Forêts des Tropiques 51: 28–39. Available from https://agritrop.cirad.fr/443213/1/document_443213.pdf [accessed 13 Sep. 2021].
  • Aubréville A. 1968. Les Césalpinioidées de la flore Camerouno-Congolaise. Adansonia, sér. 2 8(2): 147–175.
  • Biwolé A.B., Morin-Rivat J., Fayolle A., et al. 2015. New data on the recent history of the littoral forests of southern Cameroon: an insight into the role of historical human disturbances on the current forest composition. Plant Ecology and Evolution 148(1): 19–28. https://doi.org/10.5091/plecevo.2015.1011
  • Burgt X.M. van der 1997. Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae-Caesalpinioideae) in Gabon. Journal of Tropical Ecology 13: 145–151. https://www.jstor.org/stable/2559902
  • Burgt X.M. van der & Newbery D.M. 2006. Gluema korupensis (Sapotaceae), a new tree species from Korup National Park, Cameroon. Kew Bulletin 61(1): 79–84. https://www.jstor.org/stable/20443247
  • Burgt X.M. van der, Mackinder B.A., Wieringa J.J. & Estrella M. de la 2015. The Gilbertiodendron ogoouense species complex (Leguminosae–Caesalpinioideae), Central Africa. Kew Bulletin 70: 29. https://doi.org/10.1007/s12225-015-9579-4
  • Burgt X.M. van der 2018. Co-dominant Detarioideae (Leguminosae) tree species in the rain forests of Korup National Park, Cameroon. PhD thesis, Oxford Brookes University, UK. https://doi.org/10.24384/p4y5-3a68
  • Connell J.H. & Lowman M.D. 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. The American Naturalist 134(1): 88–119. https://www.jstor.org/stable/2462277
  • Djuikouo M.N.K., Peh K.S.-H., Nguembou C.K., Doucet J.-L., Lewis S.L. & Sonké B. 2014. Stand structure and species co-occurrence in mixed and monodominant Central African tropical forests. Journal of Tropical Ecology 30: 447–455. https://doi.org/10.1017/S0266467414000352
  • Engone Obiang N.L., Kenfack D., Picard N., et al. 2019. Determinants of spatial patterns of canopy tree species in a tropical evergreen forest in Gabon. Journal of Vegetation Science 30(5): 929–939. https://doi.org/10.1111/jvs.12778
  • Estrella M. de la, Cervantes S., Janssens S.B., Forest F., Hardy O.J. & Ojeda D.I. 2020. The impact of rainforest area reduction in the Guineo‐Congolian region on the tempo of diversification and habitat shifts in the Berlinia clade (Leguminosae). Journal of Biogeography 47(12): 2728–2740. https://doi.org/10.1111/jbi.13971
  • Evrard C. 1968. Recherches écologiques sur le peuplement forestier des sols hydromorphes de la cuvette centrale congolaise. Publications de l’INEAC, Série Scientifique No 110, Bruxelles.
  • Gartlan J.S., Newbery D.M., Thomas D.W. & Waterman P.G. 1986. The Influence of topography and soil phosphorus on the vegetation of Korup Forest Reserve, Cameroun. Vegetatio 65(3): 131–148. https://doi.org/10.1007/BF00044814
  • GBIF 2021. Global Biodiversity Information Facility. Available from https://www.gbif.org [accessed 13 Sep. 2021].
  • Gérard P. 1960. Etude écologique de la forêt dense à Gilbertiodendron dewevrei dans la région de l’Uele. Publications de l’INEAC, Série scientifique No 87, Bruxelles.
  • Hawthorne W.D. 1996. Holes and the sums of parts in Ghanaian forest: regeneration, scale and sustainable use. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 104: 75–176. https://doi.org/10.1017/S0269727000006126
  • Hart T.B., Hart J.A. & Murphy P.G. 1989. Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. The American Naturalist 133(5): 613–633. https://www.jstor.org/stable/2462071
  • Katembo J.M., Libalah M.B., Boyemba F.B., Dauby G. & Barbier N. 2020. Multiple stable dominance states in the Congo Basin forests. Forests 11: 553. https://doi.org/10.3390/f11050553
  • Kazmierczak M., Backmann P., Fedriani J.M., et al. 2016. Monodominance in tropical forests: modelling reveals emerging clusters and phase transitions. Journal of the Royal Society Interface 13: 117. https://doi.org/10.1098/rsif.2016.0123
  • Leal M.E. 2004. The African rain forest during the Last Glacial Maximum, an archipelago of forests in a sea of grass. PhD thesis, Wageningen University, the Netherlands. Available from https://edepot.wur.nl/25106 [accessed 13 Sep. 2021].
  • Letouzey R. 1960. La forêt à Lophira alata Banks du littoral camerounais. Hypothèses sur ses origines possibles. Bulletin de l’Institut d’Études Centrafricaines 19–20: 219–240.
  • Letouzey R. 1968. Etude phytogéographique du Cameroun. Lechevalier, Paris.
  • LPWG 2017. Legume Phylogeny Working Group: a new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66(1): 44–77. https://doi.org/10.12705/661.3
  • Makana J.-R., Ewango C.N., McMahon S.M., Thomas S.C., Hart T.B. & Condit R. 2011. Demography and biomass change in monodominant and mixed old-growth forest of the Congo. Journal of Tropical Ecology 27: 447–461. https://doi.org/10.1017/S0266467411000265
  • Maley J. 1996. The African rain forest: main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. In: Alexander I.J., Swaine M.D. & Watling R. (eds) Essays on the ecology of the Guinea-Congo rain forest. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 104: 31–73. https://doi.org/10.1017/S0269727000006114
  • Maley J., Doumenge C., Giresse P., et al. 2018. Late Holocene forest contraction and fragmentation in central Africa. Quaternary Research 89: 43–59. https://doi.org/10.1017/qua.2017.97
  • Malhi Y., Adu-Bredu S., Asare R.A., Lewis S.L. & Mayaux P. 2013. African rainforests: past, present and future. Philosophical Transactions of the Royal Society B 368: 20120312. https://doi.org/10.1098/rstb.2012.0312
  • Newbery D.M. & Gartlan J.S. 1996. A structural analysis of rain forest at Korup and Douala-Edea, Cameroon. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 104: 177–224. https://doi.org/10.1017/S0269727000006138
  • Newbery D.M., Alexander I.J. & Rother J.A. 1997. Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecological Monographs 67: 367–409. bfwgvv
  • Newbery D.M., Songwe N.C. & Chuyong G.B. 1998. Phenology and dynamics of an African rainforest at Korup, Cameroon. In: Newbery D.M., Prins H.H.T. & Brown N.D. (eds) Dynamics of tropical communities. 37th Symposium of the British Ecological Society: 177–224. Blackwell Science, Oxford.
  • Newbery D.M., Burgt X.M. van der & Moravie M.-A. 2004. Structure and inferred dynamics of a large grove of Microberlinia bisulcata trees in Central African rain forest. Journal of Tropical Ecology 20: 131–143. https://www.jstor.org/stable/4091942
  • Newbery D.M., Burgt X.M. van der, Worbes M. & Chuyong G.B. 2013. Transient dominance in a central African rain forest. Ecological Monographs 83(3): 339–382. https://doi.org/10.1890/12-1699.1
  • Norghauer J.M. & Newbery D.M. 2015. Tree size and fecundity influence ballistic seed dispersal of two dominant mast-fruiting species in a tropical rain forest. Forest Ecology and Management 338: 100–113. https://doi.org/10.1016/j.foreco.2014.11.005
  • Rietkerk M., Ketner P. & Wilde J.J.F.E. de 1996. Caesalpinioideae and the study of forest refuges in Central Africa. In: Maesen L.J.G. van der, Burgt X.M. van der & Medenbach de Rooy J.M. van (eds) The biodiversity of African plants: 618–623. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0285-5_75
  • Robbrecht E. 1996. Geography of African Rubiaceae with reference to glacial rain forest refuges. In: Maesen L.J.G. van der, Burgt X.M. van der & Medenbach de Rooy J.M. van (eds) The biodiversity of African plants: 564–581. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0285-5_71
  • Saint-Aubin G. de 1961. Aperçu sur la forêt du Gabon. Bois et Forêts des Tropiques 78: 3–17. Available from https://agritrop.cirad.fr/443993/1/document_443993.pdf [accessed 13 Sep. 2021].
  • Sayre R., Comer P., Hak J., et al. 2013. A new map of standardized terrestrial ecosystems of Africa. Association of American Geographers, Washington, D.C.
  • Sosef M.S.M. 1994. Refuge Begonias. Taxonomy, phylogeny and historical biogeography of Begonia sect. Loasibegonia and sect. Scutobegonia in relation to glacial rain forest refuges in Africa. PhD thesis, Wageningen University, the Netherlands. Available from https://edepot.wur.nl/165201 [accessed 4 Oct. 2021].
  • Tchouto M.G.P., Wilde J.J.F.E. de, Boer W.F. de, Maesen L.J.G. van der & Cleef A.M. 2009. Bio-indicator species and Central African rain forest refuges in the Campo-Ma’an area, Cameroon. Systematics and Biodiversity 7(1): 21–31. https://doi.org/10.1017/S1477200008002892
  • Thomas D.W., Kenfack D., Chuyong G.B., et al. 2003. Tree species of Southwestern Cameroon: tree distribution maps, diameter tables, and species documentation of the 50-hectare Korup Forest Dynamics Plot. Smithsonian Tropical Research Institute, Washington, D.C. Available from https://forestgeo.si.edu/sites/default/files/korup.pdf [accessed 13 Sep. 2021].
  • Torti S.D., Coley P.D. & Kursar T.A. 2001. Causes and consequences of monodominance in tropical lowland forests. The American Naturalist 157(2): 141–153. https://www.jstor.org/stable/ https://doi.org/10.1086/318629
  • Tovar C., Harris D.J., Breman E., Brncic T. & Willis K.J. 2019. Tropical monodominant forest resilience to climate change in Central Africa: a Gilbertiodendron dewevrei forest pollen record over the past 2,700 years. Journal of Vegetation Science 30(3): 575–586. https://doi.org/10.1111/jvs.12746
  • White L.J.T. & Oates J.F. 1999. New data on the history of the plateau forest of Okomu, southern Nigeria: an insight into how human disturbance has shaped the African rain forest. Global Ecology and Biogeography 8: 355–361. https://doi.org/10.1046/j.1365-2699.1999.00149.x