Plant Ecology and Evolution 154(3): 351-361, doi: 10.5091/plecevo.2021.1890
Unusual massive phytoplankton bloom in the oligotrophic Lake Tanganyika
expand article infoChristine Cocquyt§, Pierre-Denis Plisnier|, N'sibula Mulimbwa, Muderhwa Nshombo
‡ Meise Botanic Garden, Meise, Belgium§ Ghent University, Ghent, Belgium| University of Liège, Chemical Oceanography Unit, Institut de Physique, Liège, Belgium¶ Centre de Recherche en Hydrobiologie, CRH-Uvira, Democratic Republic of the Congo
Open Access
Abstract

Background and aims – Massive algae growth resulting in a phytoplankton bloom is a very rare event in the meromictic and oligotrophic Lake Tanganyika. Such a bloom was observed in the north of the lake in September 2018. Phytoplankton species composition during this bloom is compared to a documented bloom in 1955, and to the composition in September 2011–2013. Meteorological observations suggest hydrodynamics could explain the occurrence of the 2018 bloom.

Material and methods – Phytoplankton net samples were taken in the pelagic and littoral zone near Uvira during five consecutive days of the bloom in 2018. For the period 2011–2013, quantitative phytoplankton samples were obtained during a weekly sampling at the same sites. Samples were analysed with an inverted microscope and relative abundances of the algal species were compared.

Key resultsDolichospermum flosaquae (Cyanobacteria) initially dominated the bloom followed by high relative abundance of Limnococcus limneticus (Cyanobacteria) on the third sampling day in September 2018. In the pelagic zone an increase of Nitzschia asterionelloides (Bacillariophyta), and Dictyosphaerium and Lobocystis (Chlorophyta) was observed while in the littoral zone increasing abundances of dinophytes were noted. Dolichospermum flosaquae was also responsible for the bloom reported in 1955, but was only sporadically observed in the 2011–2013 samples. Although Limnococcus limneticus was present in 2011–2013, it never reached relative abundances as high as during the 2018 bloom. Meteorological data indicate that 2018 experienced different conditions compared to previous years: strong south-east winds from May to September with a more eastern direction of the wind, and a well-marked drop in atmospheric pressure between August and September.

Conclusion – After a very windy season, the combination of strong hydrodynamics, calmer lake conditions, and high solar radiation and air temperature in September 2018 was favourable for a massive Cyanobacteria bloom in the north of Lake Tanganyika.

Keywords
algal bloom, Anabaena flos-aquae, Chroococcus limneticus, Dolichospermum flosaquae, East African Great Lakes, Limnococcus limneticus, phytoplankton, secondary upwelling

References

  • Aguilera A., Haakonsson S., Martin M.V., Salerno G.L. & Echenique R.O. 2018. Bloom-forming cyanobacteria and cyanotoxins in Argentina: a growing health and environmental concern. Limnologica 69: 103–114. https://doi.org/10.1016/j.limno.2017.10.006
  • Capart A. 1949. Sondages et carte bathymétrique. In: Résultats scientifiques de l’exploration hydrobiologique du lac Tanganika (1946–1947) 2(2). Institut royal des Sciences naturelles de Belgique, Bruxelles.
  • Capelli C., Ballot A., Cerasino L., Papini A. & Salmaso N. 2017. Biogeography of bloom-forming microcystin producing and non-toxigenic populations of Dolichospermum lemmermannii (Cyanobacteria). Harmful Algae 67: 1–12. https://doi.org/10.1016/j.hal.2017.05.004
  • Carmichael W.W., Biggs D.F. & Gorham P.R. 1975. Toxicology and pharmacological action on Anabaena flos-aquae toxin. Science 187: 542–544. 0.1126/science.803708
  • Chia M.A., Jankowiak J.G., Kramer B.J., et al. 2018. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae 74: 67–77. https://doi.org/10.1016/j.hal.2018.03.002
  • Cocquyt C. 1998. Diatoms from the northern basin of Lake Tanganyika. Bibliotheca Diatomologica 39: 1–276.
  • Cocquyt C. 2006. Lacustrine and riverine algal biodiversity in the African Great Rift area. In: De Dapper M. & de Lame D. (eds) Africa’s Great Rift: diversity and unity. Proceedings of the Internal Conference, Brussels, 29–30 September 2005: 59–71. The Royal Academy of Overseas Sciences and The Royal Museum for Central Africa, Brussels.
  • Cocquyt C. & Vyverman W. 1994. Composition and diversity of the algal flora in the East African Great Lakes: a comparative survey of lakes Tanganyika, Malawi (Nyasa) and Victoria. Archiv für Hydrobiologie - Beiheft Ergebnisse der Limnologie 44: 161–172.
  • Cocquyt C., Vyverman W. & Compère P. 1993. A checklist of the algal flora of the East African Great Lakes: Malawi, Tanganyika and Victoria. Scripta Botanica Belgica 8: 1–56.
  • Cohen A.S., Gergurich E.L., Kraemer B.M., et al. 2016. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proceedings of the National Academy of Sciences of the United States of America 113: 9563–9568. https://doi.org/10.1073/pnas.1603237113
  • Coulter G.W. 1991. Lake Tanganyika and its life. Oxford University Press, London, Oxford & New York.
  • Coulter G.W. 1994. Lake Tanganyika. Archiv für Hydrobiologie - Beiheft Ergebnisse der Limnologie 44: 13–18.
  • Descy J.-P., Plisnier P.-D., Leporcq B., et al. 2005. CLIMLAKE, climate variability as recorded in Lake Tanganyika. Final Report (2001–2005). Belgian Science Policy, Brussels.
  • Dubois J.T. 1958. Evolution de la température de l’oxygène dissous et de la transparence dans la baie nord du lac Tanganika. Hydrobiologia 10: 215–240.
  • Fogg G.E., Stewart W.D.P., Fay P. & Walsby A.E. 1973. The blue-green algae. Academic Press, London & New York.
  • Groombridge B. & Jenkins M. 1998. Freshwater biodiversity: a preliminary global assessment. WCMC-World Conservation Press, Cambridge.
  • Havens K.E., James R.T., East T.L. & Smith V.H. 2003. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution 122: 379–390. https://doi.org/10.1016/S0269-7491(02)00304-4
  • Hecky R.E. & Kling H.J. 1981. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnology and Oceanography 26: 548–564. https://doi.org/10.4319/lo.1981.26.3.0548
  • Hecky R.E. & Kling H.J. 1987. Phytoplankton ecology of the great lakes in the rift valleys of Central Africa. Archiv für Hydrobiologie. Beiheft Ergebnisse der Limnologie 25: 197–228.
  • Hecky R.E., Fee E.J., Kling H. & Rudd J.W.M. 1978. Studies in the planktonic ecology of Lake Tanganyika. Fisheries & Marine Service, technical report 816: 11–51.
  • Guiry M.D. & Guiry G.M. 2021. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. Available from https://www.algaebase.org [accessed 24 Jun. 2021].
  • Komárek J. & Anagnostidis K. 1999. Cyanoprokaryota. 1. Chroococcales. In: Ettl H., Gärtner G., Heynig H. & Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer Verlag, Jena.
  • Komárek J. & Fott B. 1983. Chlorophyceae, Chlorococcales. In: Huber-Pestalozzi (ed.) Das Phytoplankton des Süsswassers 16(7/1). E. Schweizerbart’sche Verlag, Stuttgart.
  • Laamanen M.J., Forsstrom L. & Sivonen K. 2002. Diversity of Aphanizomenon flos-aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Applied and Environmental Microbiology 68: 5296–5303. https://doi.org/10.1128/aem.68.11.5296-5303.2002
  • Langenberg V.T., Sarvala J. & Roijackers R. 2003. Effect of wind induced water movements on nutrients, chlorophyll-a, and primary production in Lake Tanganyika. Aquatic Ecosystem Health & Management 6: 279–288. https://doi.org/10.1080/14634980301488
  • Langenberg V.T., Tumba J.M., Tshibangu K., et al. 2008. Heterogeneity in physical, chemical and plankton-community structures in Lake Tanganyika. Aquatic Ecosystem Health and Management 11: 16–28. https://doi.org/10.1080/14634980701879528
  • Long S., Hamilton P.B., Yang Y., et al. 2018. Multi-year succession of cyanobacteria blooms in a highland reservoir with changing nutrient status, Guizhou Province, China. Journal of Limnology 77: 232–246. https://doi.org/10.4081/jlimnol.2018.1636
  • Moisander P.H., Cheshire L.A., Braddy J., et al. 2012. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiology Ecology 79: 800–811. https://doi.org/10.1111/j.1574-6941.2011.01264.x
  • Mortimer C.H. 1974. Lake hydrodynamics. Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 20: 124–197.
  • Nankabirwa A., De Crop W., Van der Meeren T., et al. 2019. Phytoplankton communities in the crater lakes of western Uganda, and their indicator species in relation to lake trophic status. Ecological Indicators 107: 105563. https://doi.org/10.1016/j.ecolind.2019.105563
  • O’Reilly C.M., Alin S.R., Plisnier P.-D., Cohen A.S. & McKee B.A. 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768. https.//doi.org/ https://doi.org/10.1038/nature01833
  • Pick F.R. 2016. Blooming algae, a Canadian perspective on the rise of toxic cyanobacteria. Canadian Journal of Fisheries and Aquatic Sciences 73: 1149–1158. https://doi.org/10.1139/cjfas-2015-0470
  • Plisnier P.-D. 1997. Climate, limnology, and fisheries changes of Lake Tanganyika. Report GCP/RAF/271/FIN-TD/72. FAO/FINNIDA, Bujumbura.
  • Plisnier P.-D., Chitamwebwa D., Mwape L., Tshibangu K., Langenberg V. & Coenen E. 1999. Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407: 45–58. https://doi.org/10.1023/A:1003762119873
  • Plisnier P.-D., Poncelet N., Cocquyt C., et al. 2015. Cholera outbreaks at Lake Tanganyika induced by climate change? - “CHOLTIC”. Final report. Belgian Science Policy, Brussels.
  • Plisnier P.-D., Langenberg V., Mwape L., Chitamwebwa D., Tshibangu K. & Coenen E.C. 1996. Limnological sampling during an annual cycle at three stations on Lake Tanganyika (1993–1994). Report GCP/RAF/271/FIN-TD/46. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika, Bujumbura.
  • Popovský & Pfiester L.A. 1990. Dinophyceae. In: Ettl H., Gärtner G., Heynig H. & Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa 6. Gustav Fischer Verlag, Jena.
  • Salonen K., Sarvala J., Järvinen M., et al. 1999. Phytoplankton in Lake Tanganyika – Vertical and horizontal distribution of in vivo fluorescence. Hydrobiologia 407: 89–103. https://doi.org/10.1023/A
  • Seddon M., Appleton C., Van Damme D. & Graf D.L. 2011. Freshwater molluscs of Africa: diversity, distribution and conservation. In: Darwall W., Smith K., Allen D., Holland R., Harrison I. & Brooks E. (eds) The diversity of life in African freshwaters: underwater, under threat: 92–125. IUCN, Cambridge, UK and Gland, Switzerland.
  • Sokal R.R. & Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research. Third edition. W.H. Freeman and Co, New York.
  • Starmach K. 1985. Chrysophyceae und Haptophyceae. In: Ettl H., Gärtner G., Heynig H. & Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa 1. Gustav Fischer Verlag, Jena, Stuttgart.
  • Symoens J.-J. 1955a. Observation d’une fleur d’eau à Cyanophycées au lac Tanganika. Folia Scientifica Africae Centralis 1(3): 17.
  • Symoens J.-J. 1955b. Sur le maximum planctonique observé en fin de saison sèche dans le bassin nord du lac Tanganika. Folia Scientifica Africae Centralis 1(4): 12.
  • Symoens J.-J. 1956a. Sur la formation de “fleur d’eau” à Cyanophycées (Anabaena flos-aquae) dans le bassin nord du lac Tanganika. Bulletin de l’Académie royale des Sciences coloniales belge 2: 414–419.
  • Symoens J.-J. 1956b. Le lac Tanganika. Les Naturalistes Belges 37: 288–316.
  • Taylor J.C. & Cocquyt C. 2015. Diatom research in southern and central Africa: historical perspectives and current activities. Mededelingen van de Koninklijke Academie voor Overzeese Wetenschappen / Bulletin des Séances de l’Académie royale des Sciences d’Outre-Mer 61: 593–610.
  • Utermöhl H. 1958. Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 9: 1–38.
  • Van Meel L. 1954. Le phytoplancton. In: Résultats scientifiques de l’exploration hydrobiologique du lac Tanganika (1946–1947) 4(1). Institut royal des Sciences naturelles de Belgique, Bruxelles.
  • Wacklin P., Hoffmann L. & Komárek J. 2009. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9: 59–64. 0.5507/fot.2009.005
  • Zaccaroni A. & Scaravelli D. 2008. Toxicity of fresh water algal toxins to humans and animals. In: Evangelista V., Barsanti L., Frassaniti A.M., Passarelli V. & Gualtieri P. (eds) Algal toxins: nature, occurrence, effect and detection: 45–89. Springer, Dordrecht.