Plant Ecology and Evolution 153(3): 466-486, doi: 10.5091/plecevo.2020.1764
Different ways to obtain similar results: the development of the corolla and epipetaly in Rubieae (Rubioideae, Rubiaceae)
expand article infoAlexander Vrijdaghs, Erik Smets§, Petra De Block|
‡ KU Leuven, Leuven, Belgium§ Naturalis Biodiversity Center, Leiden, Netherlands| Botanic Garden Meise, Meise, Belgium
Open Access

Background and aims – Rubieae is a tribe in the subfamily Rubioideae characterised by herbaceous plants with verticillate leaves and flowers with a rudimentary or absent calyx and a short, cup-shaped corolla. This is in contrast to the flowers of most other Rubiaceae, in which the tubular corolla is longer than the corolla lobes. Also, the description by Payer, a French 19th century pioneer of floral ontogenetic research, of the floral development in Asperula, Galium, and Rubia deviates from recent insights about the development of tubular corollas, which are based on investigations of flowers of tropical Rubiaceae. Tubular corollas are currently considered as resulting from the development of underlying annular intercalary meristems, whereas Payer explained the tubular corollas in the three taxa by postgenital fusion. We therefore tested both hypotheses in six Rubieae genera, including the three taxa studied by Payer.

Methods – Floral ontogeny of ten species in six Rubieae genera based on scanning electron (SEM) and light microscopy (LM).

Conclusions – Our results suggest that, in all species studied, the mature phenotype of the corolla as well as the epipetaly of the stamens is caused by a combination of three developmental processes (the development of a stamen-corolla tube, the development of a corolla tube sensu stricto, and postgenital fusion), and the relative moment of activation of each of these processes during floral development (plastochron variation or heterochrony).

corolla, corolla tube sensu stricto, epipetaly, floral ontogeny, herbaceous Rubiaceae, heterochrony, plastochron, stamen-corolla tube


  • Bernardello G. (2007) Nectary structure and ultrastructure. In: Nicolson S.W., Nepi M., Pacini E. (eds) Nectaries and nectar: 129–166. Dordrecht, Springer.
  • Bremer B., Eriksson T. (2009) Time tree of Rubiaceae: phylogeny and dating the family subfamilies, and tribes. International Journal of Plant Sciences 170(6): 766–793.
  • Davis A., Govaerts R., Bridson D.M., Ruhsam M., Moat J., Brummitt N. (2009) A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Annals of the Missouri Botanical Garden 96(1): 68–78.
  • De Block P., Vrijdaghs A. (2013) Development of reproductive organs in Canephora madagascariensis (Octotropideae-Rubiaceae). Plant Ecology and Evolution 146(3): 310–327.
  • Ehrendorfer F., Barfuss M.H.J., Manen J.-F., Schneeweiss G.M. (2018) Phylogeny, character evolution and spatiotemporal diversification of the species-rich and world-wide distributed tribe Rubieae (Rubiaceae). Plos One 13(12): e0207615.
  • Endress P.K. (2006) Angiosperm floral evolution: morphological developmental framework. Advances in Botanical Research 44: 1–61.
  • Endress P.K. (2019) The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Botanical Journal of the Linnean Society 189(3): 201–227.
  • Erbar C. (1991) Sympetaly: a systematic character? Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 112(4): 417–451.
  • Erbar C., Leins P. (1996) The formation of corolla tubes in Rubiaceae and presumably related families. Opera Botanica Belgica 7: 103–112.
  • Govaerts R., Ruhsam M., Andersson L., Robbrecht E., Bridson D., Davis A., Schanzer I., Sonké B. (2020) World Checklist of Rubiaceae. Facilitated by the Royal Botanic Gardens, Kew. Available at [accessed 24 Jan. 2020].
  • Groeninckx I., Vrijdaghs A., Huysmans S., Smets E., Dessein S. (2007) Floral ontogeny of the Afro-Madagascan genus Mitrasacmopsis with comments on the development of superior ovaries in Rubiaceae. Annals of Botany 100(1): 41–49.
  • Heywood V.H., Brummit R.K., Culham A., Seberg O. (2007) Flowering plant families of the world. Royal Botanical Gardens, Kew.
  • Lawrence E. (1996) Henderson’s dictionary of biological terms, 11th edition. Singapore, Longman Singapore Editions Ltd.
  • Leins P., Erbar C. (2010) Flower and fruit. Morphology, ontogeny, phylogeny, function and ecology. Stuttgart, Schweizerbart Science Publishers.
  • Lens F., Groeninckx I., Smets E., Dessein S. (2009) Woodiness within the Spermacoceae-Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Annals of Botany 103(7): 1049–1064.
  • Naghiloo S., Classen-Bockhoff R. (2017) Developmental changes in time and space promote evolutionary diversification of flowers: a case study in Dipsacoideae. Frontiers in Plant Science 8: 1665.
  • Ochoterena H., Vrijdaghs A., Smets E., Classen-Bockhoff R. (2019) The search for common origin: Homology revisited. Systematic Biology 68(5): 767–780.
  • Payer J.B. (1857) Traité d’organogénie comparée de la fleur. Paris, Masson, Paris, France.
  • Puff C., Robbrecht E., Buchner R., De Block P. (1996) A survey of secondary pollen presentation in the Rubiaceae. Opera Botanica Belgica 7: 369–402.
  • Robbrecht E. (1988) Tropical woody Rubiaceae. Opera Botanica Belgica 1: 1–271.
  • Robbrecht E. (1993) On the delimitation of the Rubiaceae. In Robbrecht E. (ed.) Advances in Rubiaceae macrostystematics. Opera Botanica Belgica 6: 19–30.
  • Robbrecht E., Manen J.-F. (2006) The major evolutionary lineages of the coffee family (Rubiaceae, angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies, Cinchonoideae and Rubioideae. Systematics and Geography of Plants 76(1): 85–146.
  • Ronniger K. (1931) Floristische Ergebnisse einer Reise nach Bulgarien. Feddes Repertorium Specierum Novarum Regni Vegetabilis 29: 142–149.
  • Ronse Decraene L.P., Smets E. (2000) Floral development of Galopina tomentosa with a discussion of sympetaly and placentation in the Rubiaceae. Systematics and Geography of Plants 70(1): 155–170.
  • Rutishauser R., Ronse Decraene L.P., Smets E., Mendoza-Heuer I. (1998) Theligonum cynocrambe: developmental morphology of a peculiar rubiaceous herb. Plant Systematics and Evolution 210: 1–24.
  • Rutishauser R. (1999) Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness of organ identity. International Journal of Plant Sciences 160 (6 Suppl.): S81–S103.
  • Schönbeck-Temesy E., Ehrendorfer F. (1989) The perennial taxa of Crucianella (Rubiaceae) in SW. Asia and their eco-geographical differentiation. Plant Systematics and Evolution 165: 101–136.
  • Smets E. (1988) La présence des “nectaria persistentia” chez les Magnoliophytina (Angiospermes). Candollea 43: 709–716.
  • Smets E., Cresens E. (1988) Types of floral nectaries and the concepts “character” and “character-state” – a reconsideration. Acta Botanica Neerlandica 37: 121–128.
  • Stevens P.F. (2001 onwards) Angiosperm Phylogeny Website. Version 14, July 2017. Available at [accessed 1 Jul. 2017].
  • Tao C., Ehrendorfer F. (2011) 50. Microphysa Schrenk. In: Zhengyi W., Raven P.H., Deyuan H. (eds) Flora of China 19: 216–217.
  • Van der Meulen A. (1939) Over den bouw en de periodieke ontwikkeling der bloemknoppen bij Coffea-soorten. PhD thesis, Wageningen University, the Netherlands. Available at [accessed 2 Sep. 2020].
  • Von Faber F.C. (1912) Morphologisch-physiologische Untersuchungen an Blüten von Coffea-Arten. Annales du Jardin Botanique de Buitenzorg, 2nd ser. 25(10): 59–160.
  • Vrijdaghs A., De Block P., Verstraete B., Groeninckx I., Smets E., Dessein S. (2015) A developmental model for the corolla in Rubiaceae. Cryptic character states in corollas of the Spermacoceae alliance. Plant Ecology and Evolution 148(2): 237–255.
  • Weberling F. (1992) Morphology of flowers and inflorescences. Cambridge, UK, Cambridge University Press.
  • Yang L.-E., Meng Y., Peng D.-L., Nie Z.-L., Sun H. (2018) Molecular phylogeny of Galium L. of the tribe Rubieae (Rubiaceae) – Emphasis on Chinese species and recognition of a new genus Pseudogalium. Molecular Phylogenetics and Evolution 126: 221–232.