Plant Ecology and Evolution 153(3): 390-398, doi: 10.5091/plecevo.2020.1745
Myxomycete diversity in a humid montane forest on the eastern slopes of the Peruvian Andes
expand article infoItalo F. Treviño-Zevallos§, Carlos Lado
‡ Real Jardín Botánico, CSIC. Plaza de Murillo 2, 28014, Madrid, Spain§ Universidad Nacional de San Agustín de Arequipa, Av. Alcides Carrión s.n., Arequipa, Peru
Open Access
Abstract

Background – The humid montane forests on the eastern slopes of the Peruvian Andes are known for their high biodiversity and natural resources. While their incredibly rich plant and animal communities are still in the process of being discovered, the diversity of smaller organisms such as the Myxomycetes are even more scarcely known. In this work, we document the Myxomycete diversity in these montane forests and evaluate species abundance, occurrence by substrates, distribution, and seasonality, thus documenting population status and species ecology.

Material and methods – The study was carried out at the Wayqecha Biological Station located in the Cusco region of Peru. Two sampling campaigns took place in late January (wet season) and early May (dry season) of 2018. We performed a species inventory and evaluated alpha diversity, assemblage similarity, and abundance of Myxomycetes within six 100 m2 plots. We documented variations of species richness and abundance between seasons as well as between substrates.

Results – We recorded a total of 81 taxa of Myxomycetes. The order Physarales was the most diverse, and the most abundant species were Didymium squamulosum and Diderma deplanatum during the wet and dry season, respectively. The substrate with highest diversity overall was dead leaves. Diversity was similar in both seasons but with a notable species turnover.

Conclusion – The humid montane forest on the eastern slopes of the Andes in Peru revealed an unexpected richness in Myxomycetes. Based on our results, we conclude that this type of forest harbours one of the greatest Myxomycetes diversities in the Peruvian territory, also due to the important seasonal species turnover.

Keywords
Amoebozoa, biodiversity hotspot, myxobiota, neotropics, Peru, tropical forest

References

  • Clarke K.R., Gorley R.N. (2005) PRIMER: getting started with v6 (Plymouth routines in multivariate ecological research). Plymouth, PRIMER-E Ltd.
  • Colwell R. (2013) EstimateS, version 9.1.0. Statistical estimation of species richness and shared species from samples. Available at http://viceroy.eeb.uconn.edu/estimates [accessed 14 Aug. 2020].
  • Colwell R., Coddington J. (1994) Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society 345(1311): 101–118. https://www.jstor.org/stable/56143
  • Colwell R.K., Mao C.X., Chang J. (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10): 2717–2727. https://doi.org/10.1890/03-0557
  • Esri (2014) ArcGIS for Desktop, version 10.2.2. Environmental Systems Research Institute, Redlands, CA, USA. Available at http://www.esri.com/ [accessed 17 Aug. 2020].
  • Farr M. (1976) The Myxomycetes. Flora Neotropica Monograph No. 16. New York, New York Botanical Garden Press
  • Gao Y., Yan S., Wang G., He G., Chen S. (2018) Myxomycete diversity and ecology in the Baotianman national nature reserve, a subtropical mountain forest in central China. Fungal Ecology 35: 10–19. https://doi.org/10.1016/j.funeco.2018.06.002
  • Jiménez-Valverde J., Hortal J. (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología 8: 151–161.
  • Keller H.W., Everhart S.E. Kilgore C.M. (2017) The Myxomycetes: introduction, basic biology, life cycles, genetics, and reproduction. In: Stephenson S.L., Rojas C. (eds) Myxomycetes. Biology, systematics, biogeography and ecology: 1–40. San Diego, Elsevier. https://doi.org/10.1016/B978-0-12-805089-7.00001-9
  • Ko Ko T.W., Stephenson S.L., Hyde K.D., Lumyong S. (2011) Influence of seasonality on the occurrence of myxomycetes.
  • Chiang Mai Journal of Science 38: 71–84.
  • Lado C. (2005–2020) An online nomenclatural information system of Eumycetozoa. Real Jardín Botánico, CSIC, Madrid, Spain. Available at https://www.nomen.eumycetozoa.com [accessed 20 Jan. 2020].
  • Lado C., Pando F. (1997) Myxomycetes, I. Ceratiomyxales, Liceales, Echinosteliales Trichiales. Flora Mycologica Iberica, vol. 2. Madrid, Berlin, Stuttgart, Real Jardín Botánico, CSIC - J. Cramer.
  • Lado C., Wrigley de Basanta D., Estrada-Torres A., Stephenson S.L. (2016) Myxomycete diversity in the coastal desert of Peru with emphasis on the lomas formations. Anales del Jardín Botánico de Madrid 73(1): e032. https://doi.org/10.3989/ajbm.2436
  • Lado C., Estrada-Torres A., Wrigley de Basanta D., Schnittler M., Stephenson S.L. (2017) A rapid biodiversity assessment of Myxomycetes from a primary tropical moist forest of the Amazon basin in Ecuador. Nova Hedwigia 104(1–3): 293–321. https://doi.org/10.1127/nova_hedwigia/2016/0372
  • Lado C., Wrigley de Basanta D., Estrada-Torres A., Stephenson S.L., Treviño-Zevallos I. (2019) Diversity of Myxomycetes in arid zones of Peru part II: the cactus belt and transition zones. Anales del Jardín Botánico de Madrid 76(2): e083. https://doi.org/10.3989/ajbm.2520
  • Liu Q.S., Yan, S.Z., Chen S.L. (2015) Species diversity of Myxomycetes associated with different terrestrial ecosystems, substrata (microhabitats) and environmental factors. Mycological Progress 14: 27. https://doi.org/10.1007/s11557-015-1048-9
  • Martin G.W., Alexopoulos C.J. (1969) The Myxomycetes. Iowa, University of Iowa Press.
  • Medina C., Zeballos H., López E. (2012) Diversidad de mamíferos en los bosques montanos del valle de Kosñipata, Cusco, Perú. Mastozoología neotropical 19(1): 85–104.
  • Nannenga-Bremekamp N.E. (1991) A guide to temperate Myxomycetes. Bristol, Biopress Limited.
  • O’Dell T.E., Lodge D.J., Mueller G.M. (2011) Approaches to sampling Macrofungi. In: Mueller G.M., Bills G., Foster M.S. (eds) Biodiversity of fungi: inventory and monitoring methods: 163–168. San Diego, Elsevier.
  • Poulain M., Meyer M., Bozonnet J. (2011) Les Myxomycètes. Sévrier, Fédération Mycologique et Botanique Dauphiné – Savoie.
  • Repasky R., Janovec J., Christenson E., Pinder J., Barfield K. (2010) Diversity and abundance of orchids in a Peruvian cloud forest. Journal of the Botanical Research Institute of Texas 4: 317–332. https://www.jstor.org/stable/41972014
  • Rivera G. (2007) Composición florística y análisis de diversidad arbórea en un área de bosque montano en el centro de investigación Wayqecha, Kosñipata Cusco. Degree Thesis. Universidad Nacional Agraria La Molina, Perú.
  • Shchepin O.N, Schnittler M., Dagamac N.H.A, Leontyev D.V., Novozhilov Y.K. (2019) Unexplored diversity of microscopic Myxomycetes: evidence from environmental DNA. Plant Ecology and Evolution 152(3): 499–506. https://doi.org/10.5091/plecevo.2019.1621
  • Schnittler M., Lado C., Stephenson S. (2002) Rapid biodiversity assessment of a tropical Myxomycete assemblage - Maquipucuna Cloud Forest Reserve, Ecuador. Fungal Diversity 9: 135–167.
  • Statsoft Inc (2013) Statistica (data analysis software system) v.12. Available at https://www.tibco.com/resources/product-download/tibco-statistica-trial-download-windows [accessed 14 Aug. 2020].
  • Stephenson S. (1989) Distribution and ecology of Myxomycetes in temperate forests. II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia 81(4): 608–621. https://doi.org/10.2307/3760136
  • Stephenson S.L., Kalyanasundaran I., Lakhanpal T.N. (1993) A biogeographical comparative study of Myxomycetes in the mid-Appalachians in the eastern North America and two regions of India. Journal of Biogeography 20(6): 645–657. https://doi.org/10.2307/2845520
  • Takahashi K. (2015) Distribution of Myxomycetes on varied leaf litter types in a mixed forest in warm-temperate western Japan. Open Journal of Forestry 5: 686–696. https://doi.org/10.4236/ojf.2015.57061
  • Tejedor N., Alvarez E., Arango S., Araujo A., Blundo C., Boza T., La Torre M.A., Gaviria J., Gutierrez N., Jørgensen P., León B., López R., Malizia L., Millán B., Moraes M., Pacheco S., Rey J., Reynel C., Timana de la Flor M., Ulloa C., Vacas O., Newton A. (2012) Evaluación del estado de conservación de los bosques montanos en los Andes tropicales. Ecosistemas 21(1–2): 148–166.
  • Tran T.M.H., Stephenson S.L., Hyde K.D., Mongkolporn O. (2006) Distribution and occurrence of Myxomycetes in tropical forests of northern Thailand. Fungal Diversity 22: 227–242.
  • Wrigley de Basanta D., Lado C., García-Martín J.M., Estrada-Torres A. (2015) Didymium xerophilum, a new myxomycete from the tropical Andes. Mycologia 107(1): 157–168. https://doi.org/10.3852/14-058
  • Wrigley de Basanta D., Estrada-Torres A. (2017) Techniques for recording and isolating Myxomycetes. In: Stephenson S.L., Rojas C. (eds) Myxomycetes. Biology, Systematics, Biogeography and Ecology: 333–363. San Diego, Elsevier. https://doi.org/10.1016/B978-0-12-805089-7.00010-X
  • Young K.R., León B. (1999) Peru’s humid Eastern montane forests: an overview of their physical settings, biological diversity, human use and settlement, and conservation needs. DIVA Technical Report 5. Kalø, Denmark, Centre for Research on the Cultural and Biological Diversity of Andean Rainforests (DIVA).
  • Zar J.H. (1996) Biostatistical analysis. New Jersey, Prentice Hall.