Plant Ecology and Evolution 153(3): 348-360, doi: 10.5091/plecevo.2020.1690
Conservation of genetic diversity in Mediterranean endemic species: Arenaria balearica (Caryophyllaceae)
expand article infoJavier Bobo-Pinilla, Noemí López-González, Julio Peñas§
‡ Departamento de Botánica, Universidad de Salamanca, E-37007 Salamanca, Spain§ Unidad de Conservación Vegetal, Departamento de Botánica, Universidad de Granada, E-18071 Granada, Spain
Open Access

Background – Biodiversity loss is a problem that needs to be urgently addressed, particularly with the uncertainties of climate change. Current conservation policies principally focus on endangered species but they often give little consideration to the evolutionary processes, genetic diversity, or the rarity of non-endangered species. Endemic species occurring in rocky habitats that are undergoing exceptional habitat loss appear to be one of the most important candidates for conservation. The aim is to establish in situ and ex situ conservation recommendations for the Mediterranean endemic species Arenaria balearica.

Material and methodsArenaria balearica is a species endemic to the Mediterranean with a disjunct distribution range throughout Majorca, Corsica, Sardinia, and other small Tyrrhenian islands. A combination of molecular techniques (AFLPs and plastid DNA) was employed to determine genetic diversity and rarity across populations and to calculate the Relevant Genetic Units for Conservation (RGUCs). Moreover, Species Distribution Models (SDMs) were developed to assess the potential current distribution and the expected situation under future climatic scenarios.

Key results – To preserve the genetic diversity and rarity of the species, in situ conservation is proposed for six populations as RGUCs. Moreover, as the RGUCs can only account for a part of the phylogeographic signal, ex situ conservation is also suggested for some additional populations. According to the results, the habitat suitability in the 2050 scenario is limited and suitable areas for A. balearica could have disappeared by 2070. Therefore, the persistence of the species could be in danger in a short period of time and conservation planning becomes necessary.

Arenaria balearica, conservation, Mediterranean endemism, RGUCs, species distribution models


  • Bacchetta G., Bueno Sánchez A., Fenu G., Jiménez-Alfaro B., Mattana E., Piotto B., Virevaire M., Eds. (2008) Conservación ex situ de plantas silvestres. Principado de Asturias / La Caixa.
  • Bengtsson B.O., Weibull P., Ghatnekar L. (1995) The loss of alleles by sampling: A study of the common outbreeding grass Festuca ovina over three geographic scales. Hereditas 122(3): 221–238.
  • Blondel J., Médail F. (2009) Biodiversity and conservation. In: Woodward J.C. (ed.) The physical geography of the Mediterranean: 615–650. Oxford, Oxford University Press.
  • Bobo-Pinilla J., Barrios de León S.B., Seguí Colomar J., Fenu G., Bacchetta G., Peñas J., Martínez-Ortega M.M. (2016) Phylogeography of Arenaria balearica L. (Caryophyllaceae): evolutionary history of a disjunct endemic from the Western Mediterranean continental islands. PeerJ 4: e2618.
  • Bolós O., Molinier R. (1958) Recherces phytosociologiques dans l’île de Majorque. Collectanea Botanica 3: 699–863.
  • Breed M.F., Stead M.G., Ottewell K.M., Gardner M.G., Lowe A.J. (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conservation Genetics 14: 1–10.
  • De Castro O., Sepe F., Di Maio A., Cennamo P., De Luca P., Gianguzzi L., Menale B. (2013) Genetic structure in the paleoendemic and endangered Petagnaea gussonei (Spreng.) Rauschert (Saniculoideae, Apiaceae) and implications for its conservation. Plant Systematics and Evolution 299: 209–223.
  • Caujapé-Castells J., Pedrola-Monfort J. (2004) Designing ex-situ conservation strategies through the assessment of neutral genetic markers: Application to the endangered Androcymbium gramineum. Conservation Genetics 5: 131–144.
  • Christmas M.J., Breed M.F., Lowe A.J. (2016) Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics 17: 305–320.
  • Coart E., Glabeke S. Van, Petit R.J., Bockstaele E. Van, Roldán-Ruiz I. (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conservation Genetics 6: 259–273.
  • Dawson T.P., Jackson S.T., House J.I., Prentice I.C., Mace G.M. (2011) Beyond predictions: Biodiversity conservation in a changing climate. Science 332(6025): 53–58.
  • Diana Corrias S. (1981) Le piante endemiche della Sardegna: 94–95. Bollettino della Società Sarda di Scienze Naturali: 287–300.
  • Doadrio I., Perdices A., Machordom A. (1996) Allozymic variation of the endangered killifish Aphanius iberus and its application to conservation. Environmental Biology of Fishes 45: 259–271.
  • Dudley N. (ed.). (2013) Guidelines for Applying Protected Area Management Categories. Gland, Switzerland, IUCN. Available at [accessed 19 Aug. 2020].
  • Elith J. (2002) Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In: Quantitative Methods for Conservation Biology: 39–58. New York, Springer-Verlag.
  • Engelhardt K.A.M., Lloyd M.W., Neel M.C. (2014) Effects of genetic diversity on conservation and restoration potential at individual, population, and regional scales. Biological Conservation 179: 6–16.
  • Favarger C., Contandriopoulos J. (1961) Essai sur l’endémisme. Bulletin de la Societé Botanique Suisse 71: 384–408.
  • Fernández-Mazuecos M., Jiménez-Mejías P., Rotllan-Puig X., Vargas P. (2014) Narrow endemics to Mediterranean islands: Moderate genetic diversity but narrow climatic niche of the ancient, critically endangered Naufraga (Apiaceae). Perspectives in Plant Ecology, Evolution and Systematics 16(4): 190–202.
  • Fornós J.J., Gómez-Pujol L., Balaguer P. (2009) 8210. Pendientes rocosas calcícolas con vegetación casmofítica. In: VVAA (ed.) Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid, Ministerio de Medio Ambiente, y Medio Rural y Marino. Available at [accessed 19 Aug. 2020].
  • Gitzendanner M.A., Soltis P.S. (2000) Patterns of genetic variation in rare and widespread plant congeners. American Journal of Botany 87(6): 783–792.
  • Guisan A., Tingley R., Baumgartner J.B., Naujokaitis-Lewis I., Sutcliffe P.R., Tulloch A.I.T., Regan T.J., Brotons L., Mcdonald-Madden E., Mantyka-Pringle C., Martin T.G., Rhodes J.R., Maggini R., Setterfield S.A., Elith J., Schwartz M.W., Wintle B.A., Broennimann O., Austin M., Ferrier S., Kearney M.R., Possingham H.P., Buckley Y.M. (2013) Predicting species distributions for conservation decisions. Ecology Letters 16(12): 1424–1435.
  • Hamrick J.L., Godt M.J.W., Murawski D.A., Loveless M.D. (1991) Correlation between species traits and allozyme diversity: Implications for conservation biology. In: Falk D.A., Holsinger K.E. (eds) Genetics and conservation of rare plants: 75–86. New York, Oxford University Press.
  • Harrell F.E., Lee K.L., Califf R.M., Pryor D.B., Rosati R.A. (1984) Regression modelling strategies for improved prognostic prediction. Statistics in Medicine 3(2): 143–152.
  • Heiberger R.M. (2015) HH: statistical analysis and data display: Heiberger and Holland. Available at [accessed 19 Aug. 2020].
  • Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978.
  • Hueneke F.L. (1991) Ecological implication of genetic variation in plant populations. In: Falk D.A., Holsinger K.E. (eds) Genetics and conservation of rare plants: 31–44. New York, Oxford University Press.
  • IUCN (1993) World Conservation Strategy. Gland, Switzerland, IUCN.
  • Jansen F., Bonn A., Bowler D.E., Bruelheide H., Eichenberg D. (2019) Moderately common plants show highest relative losses. Conservation Letters 13(1): e12674.
  • López-Pujol J., Martinell M.C., Massó S., Blanché C., Sáez L. (2013) The “paradigm of extremes”: Extremely low genetic diversity in an extremely narrow endemic species, Coristospermum huteri (Umbelliferae). Plant Systematics and Evolution 299: 439–446.
  • López González G. (1990) Arenaria L. In: Talavera S., Aedo C., Castroviejo S., Romero Zarco C., Sáez L., Salgueiro F.J., Velayos M. (eds) Flora iberica vol. 2: 172–224. Madrid, Real Jardín Botánico, CSIC.
  • Lopez S., Rousset F.Ç., Shaw F.H., Shaw R.G., Ronce O. (2009) Joint effects of inbreeding and local adaptation on the evolution of genetic load after fragmentation. Conservation Biology 23(6): 1618–1627.
  • Maes D., Vanreusel W., Talloen W., Van Dyck H. (2004) Functional conservation units for the endangered Alcon Blue butterfly Maculinea alcon in Belgium (Lepidoptera: Lycaenidae). Biological Conservation 120(2): 229–241.
  • Markert J.A., Champlin D.M., Gutjahr-Gobell R., Grear J.S., Kuhn A., McGreevy T.J.J., Roth A., Bagley M.J., Nacci D.E. (2010) Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology 10: 205.
  • Massó S., López-Pujol J., López-Alvarado J., Blanché C., Sáez L. (2016) One species, one genotype: no genotypic variability in the extremely narrow endemic tetraploid Agrostis barceloi (Gramineae). Plant Systematics and Evolution 302: 609–615.
  • Médail F. (2017) The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Regional Environmental Change 17: 1775–1790.
  • Mi C., Huettmann F., Guo Y., Han X., Wen L. (2017) Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 5: e2849.
  • Nei M. (1987) Molecular evolutionary genetics. New York, Columbia University Press.
  • O’Grady J.J., Brook B.W., Reed D.H., Ballou J.D., Tonkyn D.W., Frankham R. (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation 133(1): 42–51.
  • Orellana M.R., Blanché C., Simon J., Bosch M. (2009) Genetic diversity within and among disjunct populations of the Mediterranean Island endemic Delphinium pictum and D. requienii (Ranunculaceae). Folia Geobotanica 44: 47–63.
  • Pearson R.G., Raxworthy C.J., Nakamura M., Townsend Peterson A. (2006) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34(1): 102–117.
  • Peñas J., Barrios S., Bobo-Pinilla J., Lorite J., Martínez-Ortega M.M. (2016) Designing conservation strategies to preserve the genetic diversity of Astragalus edulis Bunge, an endangered species from western Mediterranean region. PeerJ 4: e1474.
  • Pérez-Collazos E., Segarra-Moragues J.G., Catalán P. (2008) Two approaches for the selection of Relevant Genetic Units for Conservation in the narrow European endemic steppe plant Boleum asperum (Brassicaceae). Biological Journal of the Linnean Society 94(2): 341–354.
  • Piñar Fuentes J.C., Cano-Ortiz A., Musarella C.M., Pinto Gomes C.J., Spampinato G., Cano E. (2017) Rupicolous habitats of interest for conservation in the central-southern Iberian peninsula. Plant Sociology 54(2)S1: 29–42.
  • Price J.P., Wagner W.L. (2011) A phylogenetic basis for species-area relationships among three Pacific Island floras. American Journal of Botany 98(3): 449–459.
  • QGIS Development Team (2016) QGIS. A Free and Open Source Geographic Information System. Available at [accessed 19 Aug. 2020].
  • Rumeu B., Vargas P., Jaén-Molina R., Nogales M., Caujapé-Castells J. (2014) Phylogeography and genetic structure of the threatened Canarian Juniperus cedrus (Cupressaceae). Botanical Journal of the Linnean Society 175(3): 376–394.
  • Segarra-Moragues J.G., Catalán P. (2010) The fewer and the better: Prioritization of populations for conservation under limited resources, a genetic study with Borderea pyrenaica (Dioscoreaceae) in the Pyrenean National Park. Genetica 138: 363–376.
  • Shaw J., Lickey E.B., Beck J.T., Farmer S.B., Liu W., Miller J., Siripun K.C., Winder C.T., Schilling E.E., Small R.L. (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92(1): 142–166.
  • Spielman D., Brook B.W., Frankham R. (2004) Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America 101(42): 15261–15264.
  • Taberlet P., Gielly L., Pautou G., Bouvet J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109.
  • Travis S.E., Maschinski J., Keim P. (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Molecular Ecology 5(6): 735–745.
  • Vilatersana R., Susanna A., Brochmann C. (2007) Genetic variation in Femeniasia (Compositae, Cardueae), an endemic and endangered monotypic genus from the Balearic Islands (Spain). Botanical Journal of the Linnean Society 153(1): 97–107.
  • Vincenzi S., Zucchetta M., Franzoi P., Pellizzato M., Pranovi F., De Leo G.A., Torricelli P. (2011) Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecological Modelling 222(8): 1471–1478.