Plant Ecology and Evolution 152(3): 450-459, doi: 10.5091/plecevo.2019.1575
Conditional dormancy of Stipa lagascae (Poaceae) bulk-harvested on seed increase plots in South Tunisia: a reassessment and a surprise
expand article infoMarjolein Visser, Amaury Beaugendre§
‡ Plant Breeding and Sustainable Crop Production Department, Faculty of Bioengineering Sciences, University of Ghent, Coupure Links 653, B-9000 Gent, Belgium§ Present address: Agroecology Lab, Interfaculty School of Bio-engineering, Faculty of Sciences, Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, B-1050 Brussels, Belgium
Open Access
Abstract

Background and aims – With the perspective to reseed degraded drylands, grass seeds are often stocked for several years. This common practice overlooks conditional dormancy and the necessity to preserve it. This paper reports on the germination ecology of Stipa lagascae Roem. & Schult., which is a circum-Mediterranean winter-growing bunch grass of high grazing value. However, the published record on its germination ecology is scarce and inconsistent.

Methods – This record was reassessed through a series of germination trials in combination with dormancy breaking treatments on seeds that were mainly harvested on a seed increase plot in South-Tunisia.

Key results –The surprise finding was that Stipa lagascae exhibits a particular kind of conditional dormancy for many months after harvest. Whereas dormant seeds barely germinate at 10°C in classical Petri dishes or on germination tables, they germinate massively (but not fully) when allowed full contact with a water-saturated substrate at 7–10°C in boxes. Dehulling provokes fast germination of near 100% of the seeds, thus showing that the substrate effect at low temperatures breaks most but not all dormancy in a particular seed lot. This remaining or residual dormancy is not conditional, as it can only be broken through dehulling. There are thus two distinct germination windows: a very broad one for non-dormant seed and a narrow one for conditionally dormant seed.

Conclusions – A pattern is suggested whereby each seed lot evolves through a continuum from full over conditional to non-dormancy and finally mortality. However, only the state of conditional dormancy times germination optimally with regard to the start of the winter growing season in South-Tunisia. Its ecological significance should be interpreted in combination with its trypanocarpy. Reseeding for restoration purposes and to render grazing value to depleted drylands should thus use conditionally dormant seed.

Keywords
Stipa lagascae Roem. & Schult., conditional dormancy, Type I nondeep physiological dormancy, dry after-ripening, ecological restoration, Mediterranean steppe

References

  • Baskin C., Baskin J. (1998) Ecology of seed dormancy and germination in grasses. In: Cheplick G. (ed.) Population biology of grasses: 30–83. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511525445.004
  • Baskin C., Baskin J.M. (2014) Seeds. Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.
  • Delfosse K. (1998) Het doorbreken van de kiemrust bij Stipa lagascae. Master’s thesis, University of Ghent, Belgium.
  • Fang L., Loughin T.M. (2012) Analyzing binomial data in a split-plot design: classical approach or modern techniques? Communications in Statistics - Simulation and Computation 42(4): 727–740. https://doi.org/10.1080/03610918.2011.650264
  • Floret C., Pontanier R. (1982) L’aridité en Tunisie présaharienne. Paris, ORSTOM (IRD).
  • Freitag H. (1985) The genus Stipa (Graminae) in Southwest and South Asia. Notes of the Royal Botanical Gardens Edinburgh 42: 355–489.
  • Ghermandi L. (1995) The effect of the awn on the burial and germination of Stipa speciosa (Poaceae). Acta Oecologica 16(6): 719–728.
  • Hu X.W., Wu Y.P., Ding X.Y., Zhang R., Wang Y.R., Baskin J.M., Baskin C. (2014) Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the loess plateau of Northwestern China. PLoS ONE 9(11): e112579. https://doi.org/10.1371/journal.pone.0112579
  • Kigel J. (1995) Seed germination in arid and semi-arid regions. In: Kigel J., Galili G. (eds) Seed development and germination: 645–699. New York, Marcel Dekker Inc.
  • M’Seddi K., Visser M., Neffati M., Chaïeb M. (2002) Seed and spike traits from remnant populations of Cenchrus ciliaris L. in South Tunisia: high distinctiveness, no ecotypes. Journal of Arid Environments 50(2): 309–324. https://doi.org/10.1006/jare.2001.0830
  • Moore P. (ed.) (1985) Handbook on tetrazolium testing. Zurich, Tetrazolium Committee of the International Seed Testing Association.
  • Neffati M. (1994) Caractérisation morpho-biologique de certaines espèces végétales nord-africaines. Implications pour l’amélioration pastorale. PhD thesis, University of Ghent, Belgium.
  • Neffati M., Akrimi M., Floret C., Le Floc’H E. (1992) Stratégies germinatives de quelques espèces pastorales de la zone aride tunisienne. Conséquences pour le semis des parcours. In: Gaston A., Kernick M., Le Houérou H.-N.(eds) Proceedings of the Fourth International Rangelands Congress, Montpellier, 1991: 281–284. Montpellier, CIRAD.
  • Neffati M., Behaeghe T., Akrimi M., Le Floc’H E. (1996) Viabilité des semences de quelques espèces pastorales steppiques tunisiennes en rapport avec les conditions de leur conservation. Ecologia mediterranea 22: 39–50.
  • Ouled Belgacem A., Neffati M., Papanastasis V., Chaieb M. (2006) Effects of seed age and seeding depth on growth of Stipa lagascae R. & Sch. seedlings. Journal of Arid Environments 65(4): 682–687. https://doi.org/10.1016/j.jaridenv.2005.10.001
  • Peart M.H. (1979) Experiments on the biological significance of the morphology of seed-disperal units in grasses. Journal of Ecology 67(3): 843–863. https://doi.org/10.2307/2259218
  • Peart M.H. (1981) Further experiments on the biological significance of the morphology of seed-dispersal units in grasses. Journal of Ecology 69(2): 425–436. https://doi.org/10.2307/2259677
  • Peart M.H. (1984) The effects of morphology, orientation and position of grass diaspores on seedling survival. Journal of Ecology 72(2): 437–453. https://doi.org/10.2307/2260057
  • R Core Team (2014) R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at https://www.R-project.org/ [accessed 21 May 2019].
  • Schöning C., Espadaler X., Hensen I., Roces F. (2004) Seed predation of the tussock-grass Stipa tenacissima L. by ants (Messor spp.) in south-eastern Spain: the adaptive value of trypanocarpy. Journal of Arid Environments 56(1): 43–61. https://doi.org/10.1016/S0140-1963(03)00024-7
  • Sokal R.R., Rohlf F.J. (1981) Biometry. San Francisco, W.H. Freeman & co.
  • Visser M. (2001) Produire des semences autochtones pour réhabiliter des terres dégradées. Le cas de Stipa lagascae R. & Sch. en Tunisie Présaharienne. PhD thesis, University of Ghent, Belgium.
  • Visser M., M’Seddi K., Chaïeb M., Neffati M. (2008) Assessing yield and yield stability of remnant populations of Cenchrus ciliaris L. in arid Tunisia: developing a blueprint for native seed production. Grass and Forage Science 63(3): 301–313. https://doi.org/10.1111/j.1365-2494.2008.00642.x
  • Visser M., Reheul D. (2001) Restoring depleted Tunisian drylands with native steppic species: where should we source the seed? Genetic Resources and Crop Evolution 48(6): 567–578. https://doi.org/10.1023/A:1013864524495
  • Visser M., Reheul D. (2002) Producing native seed of Stipa lagascae R. and Sch. in Presaharian Tunisia: high yields, high genetic variation or both? Genetic Resources and Crop Evolution 49(6): 583–598. https://doi.org/10.1023/A:1021298521846