Plant Ecology and Evolution 152(3): 417-425, doi: 10.5091/plecevo.2019.1593
The cost of deer to trees: changes in resource allocation from growth-related traits and phenolic content to structural defence
expand article infoJulien Barrere, Xavier Morin, Sonia Saïd§, Vincent Boulanger|, Nick Rowe, Bernard Amiaud#, Marianne Bernard
‡ CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, 1919 Route de Mende, F-34293 Montpellier, France§ Office National de la Chasse et de la Faune Sauvage, Direction Recherche et Expertises, Unité Ongulés Sauvages, ‘‘Montfort”, 01330 Birieux, France| Office National des Forêts, Département Recherche, Développement et Innovation, Boulevard de Constance, 77300 Fontainebleau, France¶ AMAP, Université de Montpellier, CNRS, CIRAD, INRA, IRD, Boulevard de la Lironde, F-34398 Montpellier, France# UMR Silva, Université de Lorraine, AgroParisTech, INRA, Rue d’Amance, 54280 Champenoux, France
Open Access
Abstract

Background and aims – Plants may use various defence mechanisms to protect their tissues against deer browsing and the allocation of resources to defence may trade-off with plants’ growth. In a context of increasing deer populations in European forests, understanding the resource allocation strategies of trees is critical to better assess their ability to face an increasing browsing pressure. The aim of this study was to determine how deer removal affects the resource allocation to both defensive and growth-related traits in field conditions for three tree species (Abies alba, Picea abies and Fagus sylvatica).

Methods – We compared eight pairs of fenced-unfenced plots to contrast plots with and without browsing pressure. The pairs were set up in 2005 and 2014 to compare different fencing duration. We measured leaf and shoot traits related to the defence against herbivores (phenolic content, structural resistance, C:N ratio) and to the investment in plants’ growth and productivity (specific leaf area and nutrient content).

Key results – For the three species, the structural resistance of leaves and shoots was negatively correlated with SLA, nutrient content and phenolic content. For Abies alba, exclusion of deer decreased shoot structural resistance in favour of higher nutrient content, SLA and phenolic content. The fencing duration had no effect on the different measured traits.

Conclusions – Our results support the assumption of a trade-off between structural defence and growth-related traits at the intraspecific scale for the three studied species. We also confirmed the hypothesis that exposure to deer browsing is involved in the resource allocation of woody species. For Abies alba, fencing led to a change in resource allocation from structural defence to growth-related traits and chemical defence.

Keywords
deer browsing, functional traits, mixed forests, resource allocation, chemical defence, structural defence, fencing experiment

References

  • Ayres M.P. (1993) Plant defense, herbivory, and climate change. In: Kareiva P.M. (ed.) Biotic interactions and global change: 75–94. Sunderland, Sinauer Associates.
  • Bates D., Mächler M., Bolker B.M., Walker S.C. (2014) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–51. https://doi.org/10.18637/jss.v067.i01
  • Bergvall U.A., Leimar O. (2017) Directional associational plant defense from Red deer (Cervus elaphus) foraging decisions. Ecosphere 8(3): e01714. https://doi.org/10.1002/ecs2.1714
  • Boulanger V., Dupouey J., Archaux F., Badeau V., Baltzinger C., Chevalier R., Corcket E., Dumas Y., Forgeard F., Marell A., Montpied P., Paillet Y., Picard J.-F., Saïd S., Ulrich E. (2018) Ungulates increase forest plant species richness to the benefit of non-forest specialists. Global Change Biology 24(2): 485–495. https://doi.org/10.1111/gcb.13899
  • Bryant J.P., Chapin F.S., Klein D.R. (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40(3): 357–368. https://doi.org/10.2307/3544308
  • Cornelissen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurvich D.E., Reich P.B., Ter Steege H., Morgan H.D., Van Der Heijden M.G.A., Pausas J.G., Poorter H. (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4): 335–380. https://doi.org/10.1071/BT02124
  • Fox J., Weisberg S. (2011) Car: companion to applied regression. Available at http://CRAN. R-project.org/package=car [accessed 10 Jun. 2019].
  • Furstenburg D., van Hoven W. (1994) Condensed tannin as anti-defoliate agent against browsing by giraffe (Giraffa camelopardalis) in the Kruger National Park. Comparative Biochemistry and Physiology Part A: Physiology 107(2): 425–431. https://doi.org/10.1016/0300-9629(94)90402-2
  • Garel M., Bonenfant C., Hamann J.-L., Klein F., Gaillard J.-M. (2010) Are abundance indices derived from spotlight counts reliable to monitor red deer Cervus elaphus populations? Wildlife Biology 16(1): 77–84. https://doi.org/10.2981/09-022
  • Harvell C.D. (1990) The ecology and evolution of inducible defenses. The Quarterly review of biology 65(3): 323–340. https://doi.org/10.1086/416841
  • Hegland S.J., Rydgren K. (2016) Eaten but not always beaten: winners and losers along a red deer herbivory gradient in boreal forest. Journal of Vegetation Science 27(1): 111–122. https://doi.org/10.1111/jvs.12339
  • Herms D.A., Mattson W.J. (1992) The dilemma of plants: to grow or defend. The Quarterly review of biology 67(3): 283–335. https://doi.org/10.1086/417659
  • Holeski L.M., Hillstrom M.L., Whitham T.G., Lindroth R.L. (2012) Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia 170(3): 695–707. https://doi.org/10.1007/s00442-012-2344-6
  • Iason G. (2005) The role of plant secondary metabolites in mammalian herbivory: Ecological perspectives. Proceedings of the Nutrition Society 64(1): 123–131. https://doi.org/10.1079/PNS2004415
  • Keefover-Ring K., Rubert-Nason K.F., Bennett A.E., Lindroth R.L. (2016) Growth and chemical responses of trembling aspen to simulated browsing and ungulate saliva. Journal of Plant Ecology 9(4): 474–484. https://doi.org/10.1093/jpe/rtv072
  • Kuo S. (1996) Phosphorus. In: Sparks D. L. (ed.) Methods of soil analysis. Part 3: Chemical methods: 869–920. Madison, SSSA Book Series.
  • Langenheim J.H. (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology 20(6): 1223–1280. https://doi.org/10.1007/BF02059809
  • Moles A.T., Peco B., Wallis I.R., Foley W.J., Poore A.G.B., Seabloom E.W., Vesk P.A., Bisigato A.J., Cella-Pizarro L., Clark C.J., Cohen P.S., Cornwell W.K., Edwards W., Ejrnæs R., Gonzales-Ojeda T., Graae B.J., Hay G., Lumbwe F.C., Magaña-Rodríguez B., Moore B.D., Peri P.L., Poulsen J.R., Stegen J.C., Veldtman R., Zeipel H., Andrew N.R., Boulter S.L., Borer E.T., Cornelissen J.H.C., Farji-brener A.G., DeGabriel J.L., Jurado E., Kyhn L.A., Low B., Mulder C.P.H., Reardon-smith K., Rodríguez-Velázquez J., De Fortier A., Zheng Z., Bledinger P.G., Enquist B.J., Facelli J.M., Knight T., Majer J.D., Martínez-Ramos M., McQuillan P., Hui F.K.C. (2013) Correlations between physical and chemical defences in plants : tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? New Phytologist 198(1): 252–263. https://doi.org/10.1111/nph.12116
  • Mondolot L., Marlas A., Barbeau D., Gargadennec A., Pujol B., McKey D. (2008) Domestication and defence: Foliar tannins and C/N ratios in cassava and a close wild relative. Acta Oecologica 34(2): 147–154. https://doi.org/10.1016/j.actao.2008.05.009
  • Nosko P., Embury K. (2018) Induction and persistence of allelochemicals in the foliage of balsam fir seedlings following simulated browsing. Plant Ecology 219(6): 611–619. https://doi.org/10.1007/s11258-018-0821-7
  • Ohse B., Hammerbacher A., Seele C., Meldau S., Reichelt M., Ortmann S., Wirth C. (2016) Salivary cues: simulated roe deer browsing induces systemic changes in phytohormones and defense chemistry in wild-grown maple and beech saplings. Functional Ecology 31(2): 340–349. https://doi.org/10.1111/1365-2435.12717
  • Oksanen J., Blanchet G.F., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H. (2019) vegan: Community Ecology Package. R package version 2.5-4. Available at https://CRAN.R-project.org/package=vegan [accessed 10 Jun. 2019].
  • Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P., Vaieretti M. V., Conti G., Staver A.C., Aquino S., Cornelissen J.H.C. (2013) New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61(3): 167–234. https://doi.org/10.1071/BT12225
  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/ [accessed 10 Jun. 2019].
  • Ramirez J.I., Jansen P.A., den Ouden J., Goudzwaard L., Poorter L. (2019) Long-term effects of wild ungulates on the structure, composition and succession of temperate forests. Forest Ecology and Management 432(15): 478–488. https://doi.org/10.1016/j.foreco.2018.09.049
  • Rasband W.S. (1997) Image J1: Image processing and analysis in Java. Maryland, National Institute of Health. Available at https://imagej.net/ImageJ1 [accessed 12 Jul. 2017].
  • Royer M., Larbat R., Le Bot J., Adamowicz S., Robin C. (2013) Is the C:N ratio a reliable indicator of C allocation to primary and defence-related metabolisms in tomato? Phytochemistry 88: 25–33. https://doi.org/10.1016/j.phytochem.2012.12.003
  • Schultz J.C., Appel H.M., Abigail P.F., Arnold T.M. (2013) Flexible resource allocation during plant defense responses. Frontiers in Plant Science 4: 1–12. https://doi.org/10.3389/fpls.2013.00324
  • Steward J.L., Keeler K.H. (1988) Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos 53(1): 79–86. https://doi.org/10.2307/3565666
  • Storms D., Aubry P., Hamann J.-L., Saïd S., Fritz H., Saint-Andrieux, C., Klein F. (2008) Seasonal variation in diet composition and similarity of sympatric red deer Cervus elaphus and roe deer Capreolus capreolus. Wildlife Biology 14(2): 237–250. https://doi.org/10.2981/0909-6396(2008)14
  • Tarald S., Hegland S.J., Rydgren K., Rodriguez-Saona C., Töpper J.P. (2017) How to induce defense responses in wild plant populations? Using bilberry (Vaccinium myrtillus) as example. Ecology and Evolution 7(6): 1762–1769. https://doi.org/10.1002/ece3.2687
  • Väisänen M., Martz F., Kaarlejärvi E., Julkunen-Tiitto R., Stark S. (2013) Phenolic responses of mountain crowberry (Empetrum nigrum ssp. hermaphroditum) to global climate change are compound specific and depend on grazing by reindeer (Rangifer tarandus). Journal of Chemical Ecology 39(11–12): 1390–1399. https://doi.org/10.1007/s10886-013-0367-z
  • Vincent J.F.V. (1990) Structural biomaterials. Princeton, Princeton University Press.
  • Vincent J.P., Gaillard J.M., Bideau E. (1991) Kilometric index as biological indicator for monitoring forest roe deer populations. Acta Theriologica 36: 315–328.
  • Vincent J.F.V. (1992) Plants. In: Vincent J.F.V. (ed.) Biomechanics – materials, a practical approach: 165–191. Oxford, Oxford University Press.
  • Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.-L., Niinemets Ü., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R. (2004) The worldwide leaf economics spectrum. Nature 428: 821–827. https://doi.org/10.1038/nature02403