Plant Ecology and Evolution 154(2): 231-244, doi: 10.5091/plecevo.2021.1857
Identity of the subalpine–subarctic corticioid fungus Megalocystidium leucoxanthum (Russulales, Basidiomycota) and six related species
expand article infoViacheslav Spirin, Sergey Volobuev§, Vera Malysheva|, Otto Miettinen, Heikki Kotiranta, Karl-Henrik Larsson#
‡ LUOMUS - Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland§ Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia| Komarov Botanical Institute RAS, St Petersburg, Russia¶ Finnish Environment Institute, Helsinki, Finland# Department of Research and Collections, University of Oslo, Natural History Museum, Postboks 1172, Blindern, 0318 Oslo, Norway, Oslo, Norway
Open Access
Abstract

Background and aims – To date, Megalocystidium leucoxanthum, a corticioid fungus originally described from the Italian Alps, was considered as a widely distributed species inhabiting numerous angiosperm hosts in the northern hemisphere. Its specimens collected in different geographic areas and from various host species revealed a high morphological variability and thus obfuscated differences from the closely related M. luridum. The objective of this study was to re-establish M. leucoxanthum based on newly collected and sequenced specimens and clarify the identity of morphologically deviating collections previously ascribed to this species.

Material and methods – In total, 87 specimens of Megalocystidium spp. (including two historical types) were studied by morphological methods. Their phylogenetic relations were investigated based on DNA sequences (nrITS, nrLSU, and tef1) of 29 specimens.

Key results – Based on morphological, ecological and DNA data, we showed M. leucoxanthum sensu typi is a rare species restricted to Alnus alnobetula in subalpine and subarctic zones. Consequently, records from other hosts (mostly representatives of Salicaceae) belong to three other species, M. olens, M. perticatum, and M. salicis, described as new to science. The fourth newly introduced species, M. pellitum, occurs on the same host tree as M. leucoxanthum but it can be separated from the latter due to distinctive morphological traits and DNA sequences. Additionally, Aleurodiscus diffissus is combined in Megalocystidium and the identity of M. luridum is clarified.

Keywords
basidiomycetes, molecular systematics, Russulales, subalpine communities, taxonomy

References

  • Bernicchia A. & Gorjón S.P. 2010. Corticiaceae s.l. Fungi Europaei 12: 1–1008.
  • Bourdot H. & Galzin A. 1927. Hyménomycètes de France. Hetérobasidiés – Homobasidiés gymnocarpes. Sceaux.
  • Bresadola G. 1898. Fungi Tridentini 2(11–13): 47–81.
  • Burt E.A. 1926. The Thelephoraceae of North America. XV. Corticium. Annals of the Missouri Botanical Garden 13: 173–354.
  • Eriksson J. 1958. Studies in the Heterobasidiomycetes and Homobasidiomycetes – Aphyllophorales of Muddus National Park in North Sweden. Symbolae Botanicae Upsalienses 16: 1–172.
  • Eriksson J. & Ryvarden L. 1975. The Corticiaceae of North Europe. 3. Fungiflora, Oslo.
  • Ginns J. & Freeman G.W. 1994. The Gloeocystidiellaceae (Basidiomycota, Hericiales) of North America. Bibliotheca Mycologica 157: 1–118.
  • Ginns J. & Lefebvre M.N.L. 1993. Lignicolous corticioid fungi (Basidiomycota) of North America. Mycologia Memoirs 19: 1–247.
  • Jülich W. 1978. Studies in resupinate Basidiomycetes V. Some new genera and species. Persoonia 10: 137–140.
  • Kozlov A.M., Darriba D., Flouri T., Morel B. & Stamatakis A. 2019. RAxML-NG: a fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics btz305. https://doi.org/10.1093/bioinformatics/btz305
  • Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054
  • Parmasto E. 1968. Conspectus systematis Corticiacearum. University of Tartu, Tartu.
  • Pilát A. 1931. Über eine neue Aleurodiscus-Art aus dem Sajany-Gebirge. Hedwigia 71: 328–331.
  • Rambaut A., Suchard M.A., Xie D. & Drummond A.J. 2014. Tracer v.1.6. Available from http://tree.bio.ed.ac.uk/software/tracer/ [accessed 20 Dec. 2020].
  • Rehner S.A. & Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1): 84–98. https://doi.org/10.1080/15572536.2006.11832842
  • Ronquist F., Teslenko M., van der Mark P., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Saccardo P.A. 1889. Mycetes Sibirici. Bulletin de la Société Royale de Botanique de Belgique 28: 77–120. https://www.jstor.org/stable/20800019
  • Thiers B. continuously updated. Index Herbariorum: a global directory of public herbaria and associated stuff. New York Botanical Garden’s Virtual Herbarium. Available from http://sweetgum.nybg.org/ih [accessed 20 Dec. 2020].
  • Vilgalys R. & Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4239–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  • Vu D., Groenewald M., de Vries M., et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001
  • White T.J., Bruns T., Lee S. & Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J. & White T.J. (eds) PCR protocols: a guide to methods and applications: 315–322. Academic Press, New York.