Plant Ecology and Evolution 154(2): 207-216, doi: 10.5091/plecevo.2021.1715
Nocturnal and diurnal pollination in Copaifera coriacea, a dominant species in sand dunes of the Middle São Francisco River Basin, Northeastern Brazil
expand article infoIsys Mascarenhas Souza, Frederic Mendes Hughes, Ligia Silveira Funch, Luciano Paganucci de Queiroz
‡ Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
Open Access

Background and aimsCopaifera coriacea, a species in the resin-producing clade Detarioideae (Leguminosae), is an endemic and abundant species found in sand dunes in Brazilian Caatinga domain vegetation – a Quaternary paleodesert. We investigated floral traits and aspects of pollination biology, focusing on the pollination system of C. coriacea.

Material and methods – Anthesis duration, stigma receptivity, pollen viability, nectar concentration, and the presence of osmophores and pigments reflecting UV light were assessed. Floral visitors were classified as potential pollinators, occasional pollinators or thieves, based on the time and foraging behaviour and resource collected. Pollination effectiveness were assessed for potential pollinators by the detection of pollen tubes on the stigma or stylar canal by epifluorescence microscopy.

Key results – The species has white and small flowers, with anthesis beginning in the dark (ca 00:30) and the flowers are completely opened approximately 3 h later, when a sweet odour is perceptible. The onset of stigma receptivity and pollen grain viability occurs only after the completion of flower opening, and a concentrated nectar is available during the day. The presence of pollen tubes confirmed the efficiency of the main insects in the transfer of pollen.

Conclusion – Our result demonstrates that C. coriacea has a generalist pollination system mediated mainly by two distinct guilds of insect pollinators: moths (nocturnal, searching for nectar) and bees (diurnal, pollen collectors). This finding can provide more information about diversification in the genus Copaifera.

anthesis, floral biology, floral visitors, generalist pollination, Leguminosae, pollen tubes


  • Aguilar-Rodríguez P.A., Krömer T., García-Franco J.G. & MacSwiney M.C.G. 2016. From dusk till dawn: nocturnal and diurnal pollination in the epiphyte Tillandsia heterophylla (Bromeliaceae). Plant Biology 18: 37–45.
  • Alvares C.A., Stape J.L., Sentelhas P.C., Gonçalves J.L. & Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.
  • Amorim F.W., Galetto L. & Sazima M. 2013. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology 15: 317–327.
  • Armbruster W.S. 2014. Floral specialization and angiosperm diversity: phenotypic divergence, fitness trade-offs and realized pollination accuracy. Annals of Botany Plants 6: plu003.
  • Armbruster W.S., Shi X.-Q. & Huang S.-Q. 2014. Do specialized flowers promote reproductive isolation? Realized pollination accuracy of three sympatric Pedicularis species. Annals of Botany 113: 331–340.
  • Arroyo M.T.K. 1981. Breeding systems and pollination biology in Leguminosae. In: Polhill R.M. & Raven P.H. (eds) Advances in legume systematics: part 2: 723–769. Royal Botanic Gardens, Kew, Richmond.
  • Avila Jr. R.S. & Freitas L. 2011. Frequency of visits and efficiency of pollination by diurnal and nocturnal lepidopterans for the dioecious tree Randia itatiaiae (Rubiaceae). Australian Journal of Botany 59: 176–184.
  • Avila Jr. R., Pinheiro M. & Sazima M. 2015. The generalist Inga subnuda subsp. luschnathiana (Fabaceae): negative effect of floral visitors on reproductive success? Plant Biology 17: 728–733.
  • Costa J.A.S. 2007. Estudos taxonômicos, biossistemáticos e filogenéticos em Copaifera L. (Leguminosae-Detarieae) com ênfase nas espécies do Brasil Extra-Amazônico. PhD thesis, Universidade Estadual de Feira de Santana, Brazil.
  • Costa J.A.S. 2020. Copaifera. In: Flora do Brasil 2020, under construction. Jardim Botânico do Rio de Janeiro. Available from [accessed 9 Dec. 2019].
  • Costa A.C.G. & Machado I.C. 2017. Pin-monomorphism in Palicourea crocea (SW.) Roem. & Schult. (Rubiaceae): reproductive traits and role of floral visitors. Brazilian Journal of Botany 40: 1063–1070.
  • Dafni A., Kevan P.G. & Husband B.C. 2005. Practical pollination biology. Enviroquest Ltd., Cambridge, Ontario, Canada.
  • Dar S., Arizmendi M.D.C. & Valiente-Banuet A. 2006. Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico. Annals of Botany 97: 423–427.
  • de la Estrella M., Forest F., Klitgard B., et al. 2018. A new phylogeny-based tribal classification of subfamily Detarioideae, an early branching clade of florally diverse tropical arborescent legumes. Scientific Reports 8: 6884.
  • Faegri K. & van der Pijl L. 1979. The principles of pollination ecology. Fourth edition. Pergamon Press, Oxford, New York, USA.
  • Fougère-Danezan M., Herendeen P.S., Maumont S. & Bruneau A. 2010. Morphological evolution in the variable resin-producing Detarieae (Fabaceae): do morphological characters retain a phylogenetic signal? Annals of Botany 105: 311–325.
  • Glover B.J. & Whitney H. 2010. Iridescence and structural colour in plants – the poorly studied relatives of pigment colour. Annals of Botany 105: 505–511.
  • Gómez J.M., Perfectti F., Abdelaziz M., Lorite J., Muñoz-Pajares A.J. & Valverde J. 2014. Evolution of pollination niches in a generalist plant clade. New Phytologist 205: 440–453.
  • Grant V. 1949. Pollination systems as isolating mechanisms in angiosperms. Evolution 3: 82–97.
  • Grant V. 1994. Modes and origins of mechanical and ethological isolation in angiosperms. Proceedings of the National Academy of Sciences of the United States of America 91: 3–10.
  • Gronquist M., Bezzerides A., Attygalle A., Meinwal J., Eisner M. & Eisner T. 2001. Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proceedings of the National Academy of Sciences of the United States of America 98: 13745–13750.
  • Haber W.A. & Frankie G.W. 1989. A tropical hawkmoth community: Costa Rican dry forest sphingidae. Biotropica 21: 155–172.
  • Hernández-Conrique D., Ornelas J.F., García-Franco J.G. & Vargas F. 2007. Nectar production of Calliandra longipedicellata (Fabaceae: Mimosoideae), an endemic Mexican shrub with multiple potential pollinators. Biotropica 39: 459–467.
  • Hughes C. & Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences of the United States of America 103: 10334–10339.
  • Johnson S.D. 2010. The pollination niche and its role in the diversification and maintenance of the southern African flora. Philosophical Transactions of the Royal Society B 365: 499–516.
  • Lewis G.P., Simpson B.B. & Neff J.L. 2000. Progress in understanding the reproductive biology of the Caesalpinioideae (Leguminosae). In: Herendeen P.S. & Bruneau A. (eds) Advances in legume systematics: part 9, 65–78. Royal Botanic Gardens, Kew, Richmond.
  • Mackinder B. 2005. Detarieae. In: Lewis G., Schrire B., MacKinder B. & Lock M. (eds) Legumes of the world: 69–71. Royal Botanic Gardens, Kew, Richmond.
  • Manning J.C. & Snijman D. 2002. Hawkmoth-pollination in Crinum variabile (Amaryllidaceae) and the biogeography of sphingophily in southern African Amaryllidaceae. South African Journal of Botany 68: 212–216.
  • Martén-Rodríguez S., Fenster C.B., Agnarsson I., Skog L.E. & Zimmer E.A. 2010. Evolutionary breakdown of pollination specialization in a Caribbean plant radiation. New Phytologist 188: 403–417.
  • Nadia T.D.L., De Menezes N.L. & Machado I.C. 2013. Floral traits and reproduction of Avicennia schaueriana Moldenke (Acanthaceae): a generalist pollination system in the Lamiales. Plant Species Biology 28: 70–80.
  • Oliveira A.F., Carvalho D. & Rosado S.C.S. 2002. Taxa de cruzamento e sistema reprodutivo de uma população natural de Copaifera langsdorffii Desf. na região de Lavras (MG) por meio de isoenzimas. Brazilian Journal of Botany 25: 331–338. https://
  • Ollerton J. 1996. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. Journal of Ecology 84: 767–769.
  • Ollerton J., Alarcón R., Waser N.M., et al. 2009. A global test of the pollination syndrome hypothesis. Annals of Botany 103: 1471–1480.
  • Primack R.B. 1982. Ultraviolet patterns in flowers, or flowers as viewed by insects. Arnoldia 42: 139–146.
  • Queiroz J.A., Quirino Z. & Machado I. 2015. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators. Annals of Botany Plants 7: plv127.
  • Queiroz J.A., Quirino Z.G.M., Lopes A.V. & Machado I.C. 2016. Vertebrate mixed pollination system in Encholirium spectabile: a bromeliad pollinated by bats, opossum and hummingbirds in a tropical dry forest. Journal of Arid Environments 125: 21–30.
  • Ramirez N. & Arroyo M.K. 1990. Estructura Poblacional de Copaifera pubiflora Benth. (Leguminosae; Caesalpinioideae) en los Altos Llanos Centrales de Venezuela. Biotropica 22: 124.
  • Rech A.R., Kayna A., Oliveira P.E. & Machado I.C. 2014. Biologia da polinização. First edition. Editora Projeto Cultural, Brasíl.
  • Riffell J.A., Alarcón R. & Abrell L. 2008. Floral trait associations in hawkmoth-specialized and mixed pollination systems. Communicative & Integrative Biology 1: 6–8.
  • Rocha P.L.B., Queiroz L.P. & Pirani J.R. 2004. Plant species and habitat structure in a sand dune field in the Brazilian Caatinga: a homogeneous habitat harbouring an endemic biota. Brazilian Journal of Botany 27: 739–755.
  • Rodarte A.T.A., da Silva F.O. & Viana B.F. 2008. A flora melitófila de uma área de dunas com vegetação de caatinga, Estado da Bahia, Nordeste do Brasil. Acta Botanica Brasilica 22: 301–312.
  • Rosas-Guerrero V., Aguilar R., Martén-Rodríguez S., et al. 2014. A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecology Letters 17: 388–400.
  • Sazima M., Sazima I. & Buzato S. 1994. Nectar by day and night Siphocampylus sulfureus (Lobeliaceae) pollinated by hummingbirds and bats. Plant Systematics and Evolution 191: 237–246.
  • Scogin R.Y., Young D.A. & Jones C.E. 1977. Anthochlor pigments and pollination biology. II. The ultraviolet patterns of Coreopsis gigantea (Asteraceae). Bulletin of the Torrey Botanical Club 104(2): 155–159.
  • Sexton J.P., Hangartner S.B. & Hoffmann A.A. 2013. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68: 1–15.
  • Valente L.M., Manning J.C., Goldblatt P. & Vargas P. 2012. Did pollination shifts drive diversification in Southern African Gladiolus? Evaluating the model of pollinator-driven speciation. The American Naturalist 180: 83–98.
  • Waser N.M., Chittka L., Price M.V., Williams N.M. & Ollerton J. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 1043–1060.