Plant Ecology and Evolution 153(2): 208-218, doi: 10.5091/plecevo.2020.1668
Seasonality drives herbaceous community beta diversity in lithologically different rocky outcrops in Brazil
expand article infoJaquelina Nunes, Pedro M. Villa§, Andreza V. Neri|, Wesley A. Silva§, Carlos E.G.R. Schaefer
‡ Universidade do Estado de Minas Gerais, Brazil§ Universidade Federal de Viçosa, Department of Plant Biology, Campus Viçosa, 36570-900, Viçosa-MG, Brazil| Universidade Federal de Viçosa, Department of Plant Biology, Laboratory of Ecology and Evolution of Plants, Campus Viçosa, 36570-900, Viçosa-MG, Brazil¶ Universidade Federal de Viçosa, Department of Soil, Campus Universitário, 36570-900, Viçosa-MG, Brazil
Open Access
Abstract

Background and aims – Seasonality exerts strong controlling forces on species diversity in herbaceous species communities, however, this control process remains poorly understood in tropical lithologically different rocky outcrops. We aim to investigate the effect of seasonality and the variability of soil properties on changes in the herbaceous species richness and species composition of two different herbaceous species communities on rocky outcrops in Brazil. We hypothesize that seasonality, determined by variation in precipitation, and soil fertility, determined by variability in nutrient-related soil properties, drives species diversity (i.e., richness and beta diversity) patterns of herbaceous communities at local scale.

Methods – To investigate how the variation between dry and wet seasons affects species richness and beta diversity, we studied plots on rocky outcrops of Iron Quadrangle (40 plots, 1 × 1 m) and Carajás (20 plots, 1 × 1 m).

Key results – We observed similar richness patterns between seasons, without significant differences between sites, using rarefaction and extrapolation curves. However, we observed significant differences in beta diversity between seasons. Our results indicate that seasonality determines the temporal variation of the herbaceous species composition, but not species richness. Likewise, our tested models indicated that seasonality shape beta diversity in the studied rocky outcrops.

Conclusions – The predictable seasonal precipitation is closely related to the community composition on this type of rocky outcrop formation, where there typically is a marked seasonal water deficit pattern, with increased deficit during the dry season. We presume that seasonality is an important driver in determining plant community assembly at local scale on the studied rocky outcrops.

Keywords
beta diversity, campo rupestre, environmental seasonality, seasonal precipitation

References

  • Alizadeh K., Matthias I., Rodríguez-Zorro P.A., Hermanowski B., da Costa M.L., Behling H. (2017) Forest-savanna boundary shift on the plateau of Serra Sul dos Carajás (southeastern Amazonia) since the mid-Holocene; driving forces and limiting factors. Quaternary International 449: 12–21. https://doi.org/10.1016/j.quaint.2017.07.001
  • Alvares C.A., Stape J.L., Sentelhas P.C., de Moraes G.J.L., Sparovek G. (2014) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507
  • Alves R.J.V., Silva N.G., Oliveira J.A., Medeiros D. (2014) Circumscribing campo rupestre – megadiverse Brazilian rocky montane savanas. Brazilian Journal of Biology 74(2): 355–362. https://doi.org/10.1590/1519-6984.23212
  • Alves Silva W., Villa P.M., Schaefer C.E.G., Ferreira-Júnior W.G., Campos P.V., Fialho I.F., Neri A.V. (2019) Diversity and life-forms of a woody-herbaceous community on the quartzite rocky complexes in the Brazilian Iron Quadrangle. Revista de Biologia Tropical 67(3): 357–369.
  • Anderson M.J., Crist T.O., Chase J.M., Vellend M., Inouye B.D., Freestone A.L., Sanders N.J., Cornell H.V., Comita L.S., Davies K.F., Harrison S.P., Kraft N.J.B., Stegen J.C. Swenson N.G. (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14(1): 19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
  • Bao F., Elsey-Quirk T., Assis M.A., Pott A. (2017) Seed bank of seasonally flooded grassland: Experimental simulation of flood and post-flood. Aquatic Ecology 52: 93–105. https://doi.org/10.1007/s10452-017-9647-y
  • Bao F., Elsey-Quirk T., Assis M.A., Arruda R., Pott A. (2018) Seasonal flooding, topography, and organic debris interact to influence the emergence and distribution of seedlings in a tropical grassland. Biotropica 50(4): 616–624. https://doi.org/10.1111/btp.12550
  • Bao F., Villa P.M., Rodrigues A.C., Schmitz D., Assis M.A., Arruda R., Pott A. (2019) Topography and seasonality promote taxonomic beta diversity of seedlings in a tropical wetland. Oecologia Australis 23: 917–925. https://doi.org/10.4257/oeco.2019.2304.15
  • Bates D., Mächler M., Bolker B., Walker S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1): 1–48. https://doi.org/10.18637/jss.v067.i01
  • Bates D., Maechler M., Bolker B., Walker S., Christensen R.H.B., Singmann H., Dai B., Scheipl F., Grothendieck G., Green P. (2017) ‘lme4’ package: Linear mixed-effects models using eigen and S4. Available at https://cran.r-project.org/web/packages/lme4/lme4.pdf [accessed 11 May 2020].
  • Benites V., Schaefer C.E.G.R., Simas F.N.B., Santos H.G. (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Brazilian Journal of Botany 30: 569–577. https://doi.org/10.1590/S0100-84042007000400003
  • Braun-Blanquet J. (1979) Fitosociología. Bases para el estudio de las comunidades vegetales. Madrid, H. Blume Ediciones.
  • Campos P.V., Villa P.M., Nunes J.A., Schaefer C.E.G.R., Poremsbki S., Neri A.V. (2018) Plant diversity and community structure of Brazilian Páramos. Journal of Mountain Science 15: 1186–1198. https://doi.org/10.1007/s11629-017-4674-7
  • Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K., Ellison A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84(1): 45–67. https://doi.org/10.1890/13-0133.1
  • Colwell R.K., Chao A., Gotelli N.J., Lin S.Y., Mao C.X., Chazdon R.L., Longino J.T. (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5(1): 3–21. https://doi.org/10.1093/jpe/rtr044
  • Crawley M.J. (2013) The R Book. Second edition. London, Wiley.
  • Duong T.T., Nguyen H.Y., Le T.P., Nguyen T.Q., Tran T.T.H., Le N.D., Dang D.K., Vu T.N., Panizzo V, McGowan S. (2019) Transitions in diatom assemblages and pigments through dry and wet season conditions in the Red River, Hanoi (Vietnam). Plant Ecology and Evolution 152(2): 163–177. https://doi.org/10.5091/plecevo.2019.1627
  • EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análises de solo. Second edition. Rio de Janeiro, Ministério da Agricultura e do Abastecimento. [In Portuguese].
  • FAO, IIASA, ISRIC, ISSCAS, JRC (2012) Harmonized world soil database (version 1.2). Rome, Italy & Laxenburg, Austria, FAO & IIASA.
  • Fernandes G.W. (2016) The megadiverse rupestrian grassland. In: Fernandes G.W. (ed.) Ecology and conservation of mountaintop grasslands in Brazil: 3–14. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-29808-5_1
  • Ferrari L.T., Schaefer C.E.G.R., Fernandes R.B.A., Mendonça B.A.F., Gjorup D.F., Corrêa G.R., Senra E.O. (2016) Thermic and hydric dynamics of ironstone (Canga) and quartzite rupestrian grasslands in the Quadrilátero Ferrífero: The ecological importance of water. In: Fernandes G.W. (ed.) Ecology and conservation of mountaintop grasslands in Brazil: 71–85. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-29808-5_4
  • Ferreira M.S., Delpupo G.G.V., Vieira M.V., Silva R.C. (2017) Climate-driven variation in space use by the neotropical marsupial Metachirus nudicaudatus. Oecologia Australis 21(4): 450–454. https://doi.org/10.4257/oeco.2017.2104.09
  • Figueira J.E.C., Ribeiro K.T., Ribeiro M.C., Jacobi C.M., Franc A. H., Neves A.C.O., Conceição A.A., Mourão F.A., Souza J.M., Miranda C.A.K. (2016) Fire in rupestrian grasslands: plant response and management. In: Fernandes G.W. (ed.) Ecology and conservation of mountaintop grasslands in Brazil: 415–448. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-29808-5_18
  • Gröger A., Huber O. (2007) Rock outcrop habitats in the Venezuelan Guayana lowlands: their main vegetation types and floristic components. Brazilian Journal of Botany 30(4): 599–609. https://doi.org/10.1590/S0100-84042007000400006
  • Heino J., Melo A.S., Bini L.M. (2015) Reconceptualising the beta diversity environmental heterogeneity relationship in running water systems. Freshwater Biology 60(2): 223–235. https://doi.org/10.1111/fwb.12502
  • Hsieh T.C., Ma K.H., Chao A. (2016) ‘iNEXT’: iNterpolation and EXTrapolation for species diversity (Version 2.0.12). Available at https://cran.r-project.org/web/packages/iNEXT/iNEXT.pdf [accessed 11 May 2020].
  • Husson F., Lê S., Pagès J. (2017) Exploratory Multivariate Analysis by Example Using R. Second edition. New York, Chapman & Hall/CRC.
  • Instituto Nacional de Meteorologia – INMET (2020) Available at http://www.inmet.gov.br/portal/ [accessed 4 May 2020].
  • Jacobi C.M., Do Carmo F.F., Vincent R.C., Stehmann Jr. (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity and Conservation 16: 2185–2200. https://doi.org/10.1007/s10531-007-9156-8
  • Klanderud K., Vandvik V., Goldberg D. (2015) The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLOS ONE 10(6): e0130205. https://doi.org/10.1371/journal.pone.0130205
  • Le Bagousse-Pinguet Y., Gross N., Maestre F.T., Maire V., de Bello F., Fonseca C.R., Kattge J., Valencia E., Leps J., Liancourt P., Avolio M. (2017) Testing the environmental filtering concept in global drylands. Journal of Ecology 105(4): 1058–1069. https://doi.org/10.1111/1365-2745.12735
  • Martinelli G., Moraes M.A. (2013) Livro Vermelho da Flora do Brasil. First Edition. Rio de Janeiro, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro.
  • Mota G.S., Luz G.R., Mota N.M., Silva Coutinho E., Veloso D.M., Das. M., Fernandes G.W., Nunes Y.R.F. (2018) Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. Flora 238: 32–42. https://doi.org/10.1016/j.flora.2017.03.010
  • Myers J.A., Chase J.M., Crandall R.M., Jimenez I. (2015) Disturbance alters beta-diversity but not the relative importance of community assembly mechanisms. Journal of Ecology 103(5): 1291–1299. https://doi.org/10.1111/1365-2745.12436
  • Negreiros D., Le Stradig S., Wilson Fernandes G., Rennó H.C. (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecology 215: 379–388. https://doi.org/10.1007/s11258-014-0302-6
  • Neri A.V., Borges G.R.A., Neto-Meira J.A.A.M., Magnago L.F.S., Trotter I.M., Schaefer C.E.G.R., Porembski S. (2016) Soil and altitude drives diversity and functioning of Brazilian Páramos (Campo de Altitude). Journal of Plant Ecology 10(5): 771–779. https://doi.org/10.1093/jpe/rtw088
  • Nunes J.A., Schaefer C.E.G.R., Ferreira-Junior W.G., Neri A.V., Correa G.R., Enright N.J. (2015) Soil-vegetation relationships on a banded ironstone ‘island’, Carajás Plateau, Brazilian Eastern Amazonia. Anais da Academia Brasileira de Ciências 87(4): 2097–2110. https://doi.org/10.1590/0001-376520152014-0106
  • Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P. et al. (2018) Vegan: Community ecology package. R package version 2.0-7. Available at https://cran.r-project.org/web/packages/vegan/index.html [accessed 11 May 2020].
  • Pecl G.T., Araújo M.B., Bell J.D., Blanchard J., Bonebrake T.C., Chen I.C., Clark T.D., Colwell R.K., Danielsen F., Evengård B., Falconi L., Ferrier S., Frusher S., Garcia R.A., Griffis R.B., Hobday A.J., Janion-Scheepers C., Jarzyna M.A., Jennings S., Lenoir J., Linnetved H.I., Martin V.Y., McCormack P.C., McDonald J., Mitchell N.J., Mustonen T., Pandolfi J.M., Pettorelli N., Popova E., Robinson S.A., Scheffers B.R., Shaw J.D., Sorte C.J.B., Strugnell J.M., Sunday J.M., Tuanmu M.N., Vergés A., Villanueva C., Wernberg T., Wapstra E., Williams S.E. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (6332): eaai9214. https://doi.org/10.1126/science.aai9214
  • Poorter L., Rozendaal D.M.A., Bongers F., Almeida-Cortez J.S., Zambrano A.M., Álvarez F.S., et al. (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology & Evolution 3: 928–934. https://doi.org/10.1038/s41559-019-0882-6
  • Pott A., Silva J.S.V. (2015) Terrestrial and aquatic vegetation diversity of the Pantanal wetland. In: Bergier I., Assine M.L. (eds) Dynamics of the Pantanal Wetland in South America. The Handbook of Environmental Chemistry vol. 37: 111–131. https://doi.org/10.1007/698_2015_352
  • Prata E., Teixeira A., Joly C., Assis M. (2018) The role of climate on floristic composition in a latitudinal gradient in the Brazilian Atlantic Forest. Plant Ecology and Evolution 151(3): 303–313. https://doi.org/10.5091/plecevo.2018.1407
  • R Core Team (2017) R: A language and environment for statistical computing. Version 3.2.2. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.R-project.org/ [accessed 11 May 2020].
  • R Core Team (2019) R: A language and environment for statistical computing. Version 3.6.0. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.R-project.org/ [accessed 11 May 2020].
  • Royo A., Ristau T. (2013) Stochastic and deterministic processes regulate spatio-temporal variation in seed bank diversity. Journal of Vegetation Science 24(4): 724–734. https://doi.org/10.1111/jvs.12011
  • Rozendaal D.M.A., Bongers F., Aide T.M., Alvarez-Dávila E., Ascarrunz N., Balvanera P., et al. (2019) Biodiversity recovery of Neotropical secondary forests. Science Advances 5(3): eaau3114. https://doi.org/10.1126/sciadv.aau3114
  • Ruhí A., Datry T., Sabo J.L. (2017) Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems. Conservation Biology 31(6): 1459–1468. https://doi.org/10.1111/cobi.12906
  • Schaefer C.E.G.R., Corrêa G.R., Candido H.G., Arruda D.M., Nunes J.A., Araujo R.W., Rodrigues P.M.S., Fernandes Filho E.I., Pereira A.F.S., Brandão P.C., Neri A.V. (2016) The physical environment of rupestrian grasslands (campos rupestres) in Brazil: Geological, geomorphological and pedological characteristics, and interplays. In: Fernandes G.W. (ed.) Ecology and conservation of mountaintop grasslands in Brazil: 15–53. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-29808-5_2
  • Schmitz D., Schaefer C.E.R.G., Putzke J., Francelino M.R., Ferrari F.R., Corrêa G.R., Villa P.M. (2020) How does the pedoenvironmental gradient shape non-vascular species assemblages and community structures in Maritime Antarctica? Ecological Indicators 108: 105726. https://doi.org/10.1016/j.ecolind.2019.105726
  • Silva W.A., Villa P.M., Schaefer C.E.G.R., Ferreira Júnior, W.G., Campos P.V., Fialho I.F., Neri A.V. (2019) Diversity and lifeforms of a woody herbaceous community on the quartzite rocky complexes in the Brazilian Iron Quadrangle. Revista de Biología Tropical 67: 357–369.
  • Silveira F.A.O., Negreiros D., Barbosa N.P.U., Buisson E., Carmo F.F., Carstensen, D.W., Conceiçao A.A., Cornelissen T.G., Echternacht L., Fernandes G.W., Garcia Q.S., Guerra T.J., Jacobi C.M., Lemos-Filho J.P., le Stradic S., Morellato L.P.C., Neves F.S., Oliveira R.S., Schaefer C.E., Viana P.L., Lambers H. (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil 403: 129–152. https://doi.org/10.1007/s11104-015-2637-8
  • Tonkin J.D., Bogan M.T., Bonada N., Rios-Touma B., Lytle D.A. (2017) Seasonality and predictability shape temporal species diversity. Ecology 98(5): 1201–1216. https://doi.org/10.1002/ecy.1761
  • Tuomisto H. (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1): 2–22. https://doi.org/10.1111/j.1600-0587.2009.05880.x
  • Ulrich W., Soliveres S., Maestre F.T., Gotelli N.J., Quero J.L., Delgado-Baquerizo M., et al. (2014) Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography 41(12): 2307–2319. https://doi.org/10.1111/jbi.12377
  • Villa P.M., de Siqueira Cardinelli L., Magnago L.F., Heringer G., Martins S.V., Campos P.V., Rodrigues A.C., Neri A.V., Meira-Neto J.A.A. (2018) Relación especie-área y distribución de la abundancia de especies en una comunidad vegetal de un inselberg tropical: efecto del tamaño de los parches. Revista de Biología Tropical 66(2): 937–951. https://doi.org/10.15517/RBT.V66I2.33424
  • Villa P.M., Pérez-Sánchez A.J., Nava F., Acevedo A., Cadenas D.A. (2019a) Local-scale seasonality shapes anuran community abundance in a cloud forest of the tropical Andes. Zoological Studies 58: 17. https://doi.org/10.6620/ZS.2019.58-17
  • Villa P.M., Martins S.V., Rodrigues A.C., Vieira N., Bonilla M.A., Ali A. (2019b) Testing species abundance distribution models in tropical forest successions: implications for fine-scale passive restoration. Ecological Engineering 135: 28–35. https://doi.org/10.1016/j.ecoleng.2019.05.015
  • Vincent R.C. (2004) Florística, Fitossociologia e relações entre a vegetação e o solo em áreas de campos ferruginosos no Quadrilátero Ferrífero, Minas Gerais. Ph.D. thesis, Universidade de São Paulo, São Paulo, Brazil.