Plant Ecology and Evolution 152(2): 285-292, doi: 10.5091/plecevo.2019.1605
New Amphora and Halamphora (Bacillariophyta) species from springs in the northern Apennines (Emilia-Romagna, Italy)
expand article infoMarco Cantonati, Nicola Angeli§, Horst Lange-Bertalot|, Zlatko Levkov
‡ MUSE - Museo delle Scienze, Trento, Italy§ MUSE - Museo delle Scienze, Limnology & Phycology Section, Corso del Lavoro e della Scienza 3, I-38123 Trento, Italy| Goethe Universität Frankfurt, Biologicum, Max-von-Laue Straβe 13, 60438 Frankfurt, Germany¶ Faculty of Natural Sciences and Mathematics at the University of Skopije, Skopije, Republic of North Macedonia
Open Access
Abstract

Background and aims – The detailed analysis of algae and cyanoprokaryotes in a heterogeneous group of spring habitats (including all the different typologies) of the northern Apennines (Emilia-Romagna Region, Italy) revealed a new Amphora species in a small mountain flowing spring with low conductivity, and a new Halamphora species in a large, inland-saline (Triassic gypsum), fast flowing spring (Poiano spring). The present study aims to describe in detail these two new species found in contrasting spring types.

Methods – This study is based on light microscopy (both fresh –for plastids – and prepared materials) and scanning electron microscopy observations, as well as a thorough morphological, physical, chemical, and biological characterization of the habitats.

Key resultsAmphora eileencoxiae sp. nov. is most similar to A. vetula (and allied taxa), and is characterized by the outline with acutely rounded, moderately ventrally bent ends, by the dimensions, and by the well-defined, semi-elliptic dorsal area. Halamphora poianensis sp. nov. is most similar to H. gasseae but differs by the higher stria density, the clearly ventrally bent ends, and the strongly developed dorsal raphe ledge.

Conclusions – This is a contribution to the knowledge of the genera Amphora and Halamphora in mountain springs in understudied geographic areas and inland-saline springs, the species communities of which are likely insufficiently explored.

Keywords
diatoms, springs, inland saline habitats, new species, Amphora eileencoxiae, Halamphora poianensis, northern Apennines

References

  • Alverson A.J., Jansen R.K., Theriot E.C. (2007) Bridging the Rubicon: Phylogenetic analysis reveals repeated colonisations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution 45(1): 193–210. https://doi.org/10.1016/j.ympev.2007.03.024
  • Angeli N., Cantonati M., Spitale D., Lange-Bertalot H. (2010) A comparison between diatom assemblages in two groups of carbonate low-altitude springs with different levels of anthropogenic disturbances. Fottea 10: 115–128. https://doi.org/10.5507/fot.2010.006
  • Cantonati M., Ortler K. (1998) Using spring biota of pristine mountain areas for long term monitoring - Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the Headwater’98 Conference held at Merano/Meran, Italy, April 1998). IAHS Publ. 248: 379–385.
  • Cantonati M., Lange-Bertalot H. (2010) Diatom biodiversity of springs in the Berchtesgaden National Park (northern Alps, Germany), with the ecological and morphological characterization of two species new to science. Diatom Research 25: 251–280. https://doi.org/10.1080/0269249X.2010.9705849
  • Cantonati M., Lange-Bertalot H., Scalfi A., Angeli N. (2010) Cymbella tridentina sp. nov. (Bacillariophyta), a crenophilous diatom from carbonate springs of the Alps. Journal of the North American Benthological Society 29: 775–788. https://doi.org/10.1899/09-077.1
  • Cantonati M., Rott E., Spitale D., Angeli N., Komárek J. (2012a) Are benthic algae related to spring types? Freshwater Science 31: 481–498. https://doi.org/10.1899/11-048.1
  • Cantonati M., Angeli N., Bertuzzi E., Spitale D., Lange-Bertalot H. (2012b) Diatoms in springs of the Alps: spring types, environmental determinants, and substratum. Freshwater Science 31: 499–524. https://doi.org/10.1899/11-065.1
  • Cantonati M., Segadelli S., Ogata K., Tran H., Sanders D., Gerecke R., Rott E., Filippini M., Gargini A., Celico F. (2016a) A global review on ambient Limestone-Precipitating Springs (LPS): Hydrogeological setting, ecology, and conservation. Science of the Total Environment 568: 624–637. https://doi.org/10.1016/j.scitotenv.2016.02.105
  • Cantonati M., Angeli N., Spitale D., Lange-Bertalot H. (2016b) A new Navicula (Bacillariophyta) species from low-elevation carbonate springs affected by anthropogenic disturbance. Fottea 16: 255–269. With supplementary materials (Plate Fig. S1 & Table S1). https://doi.org/10.5507/fot.2016.013
  • Cox E.J. (1996) Identification of freshwater diatoms from live material. London, Chapman and Hall.
  • EN 13946 (2003) Water quality. Guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. Available from http://www.safrass.com/partners_area/BSI%20Benthic%20diatoms.pdf [accessed 14 Mar. 2019].
  • Hustedt F. (1949) Süsswasser-Diatomeen aus dem Albert-Nationalpark in Belgisch-Kongo. Exploration du Parc National Albert, Mission H. Damas (1935-1936). Vol. 8. Bruxelles, Institut des Parcs Nationaux du Congo Belge.
  • Levkov Z. (2009) Amphora sensu lato. In: Lange-Bertalot H. (ed.) Diatoms of Europe vol. 5: 5–916.
  • Levkov Z., Krstic S., Metzeltin D., Nakov T. (2007) Diatoms of lakes Prespa and Ohrid, about 500 taxa from ancient lake system. Iconographia Diatomologica 16: 1–613.
  • Mann D.G. (1999) Crossing the Rubicon: the effectiveness of the marine/freshwater interface as a barrier to the migration of diatom germplasm. In: Mayama S., Idei M., Koizumi I. (eds) Proceedings of the 14th International Diatom Symposium: 1–21. Koenigstein, Koeltz Scientific Books.
  • Round F.E., Crawford R.M., Mann D.G. (1990) The diatoms: Biology and morphology of the genera. Cambridge, Cambridge University Press.
  • Ruck E.C., Nakov T., Alverson A.J., Theriot E.C. (2016) Phylogeny, ecology, morphological evolution, and reclassification of the diatom orders Surirellales and Rhopalodiales. Molecular Phylogenetics and Evolution 103: 155–171. https://doi.org/10.1016/j.ympev.2016.07.023
  • Stepanek J.G., Kociolek P.J. (2014) Molecular phylogeny of Amphora sensu lato (Bacillariophyta): an investigation into the monophyly and classification of the Amphoroid diatoms. Protist 165: 177–195. https://doi.org/10.1016/j.protis.2014.02.002
  • Stepanek J.G., Kociolek P.J. (2015) Three new species of the diatom genus Halamphora (Bacillariophyta) from the prairie pothole lakes region of North Dakota, USA. Phytotaxa 197(1): 27–36. https://doi.org/10.11646/phytotaxa.197.1.3
  • Stepanek J.G., Kociolek P.J. (2018) Amphora and Halamphora from coastal and inland waters of the United States and Japan. Bibliotheca Diatomologica 66: 1–260.
  • Stepanek J.G., Kociolek P.J. (2019) Molecular phylogeny of the diatom genera Amphora and Halamphora (Bacillariophyta) with a focus on morphological and ecological evolution. Journal of Phycology 55: 442–456. https://doi.org/10.1111/jpy.12836
  • Taxböck L., Linder H.P., Cantonati M. (2017) To what extent are Swiss springs refugial habitats for sensitive and endangered diatom taxa? Water 9: 967. https://doi.org/10.3390/w9120967
  • Werum M., Lange-Bertalot H. (2004) Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. In: Lange-Bertalot H. (ed.) Iconographia Diatomologica vol. 13. Ruggell, Liechtenstein, A.R.G. Gantner.
  • Wojtal A.Z. (2013) Species composition and distribution of diatom assemblages in spring waters from various geological formations in southern Poland. Bibliotheca Diatomologica 59: 1–436.
  • Żelazna-Wieczorek J. (2011) Diatom flora in springs of Łódź Hills (Central Poland). Diatom Monographs 13: 1–420.