Plant Ecology and Evolution 152(2): 163-177, doi: 10.5091/plecevo.2019.1627
Transitions in diatom assemblages and pigments through dry and wet season conditions in the Red River, Hanoi (Vietnam)
expand article infoThi Thuy Duong, Hai Yen Nguyen, Thi Phuong Quynh Le§, Trung Kien Nguyen, Thi Thu Huong Tran|, Nhu Da Le§, Dinh Kim Dang, Thi Nguyet Vu, Virginia Panizzo, Suzanne McGowan
‡ Institute of Environmental Technology Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam§ Institute of Natural Products Chemistry Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam| Faculty of Environment, Ha Noi University of Mining and Geology, 18, Vien street, Duc Thang Ward, Bac Tu Liem District, Hanoi, Vietnam¶ School of Geography, Centre for Environmental Geochemistry, University of Nottingham, University Park, Nottingham, NG72RD, United Kingdom
Open Access

Background and aims – Biomonitoring is an important tool for assessing river water quality, but is not routinely applied in tropical rivers. Marked hydrological changes can occur between wet and dry season conditions in the tropics. Thus, a prerequisite for ecological assessment is that the influence of ‘natural’ hydrological change on biota can be distinguished from variability driven by water quality parameters of interest. Here we aimed to (a) assess seasonal changes in water quality, diatoms and algal assemblages from river phytoplankton and artificial substrates through the dry-wet season transition (February–July 2018) in the Red River close to Hanoi and (b) evaluate the potential for microscopic counts and high-performance liquid chromatography (HPLC) analysis of chlorophyll and carotenoid pigments for biomonitoring in large tropical rivers.

Methods – River water (phytoplankton) and biofilms grown on artificial glass substrates were sampled monthly through the dry (February–April) to wet (May–August) season transition and analysed via microscopic and HPLC techniques.

Key results – All phototrophic communities shifted markedly between the dry and wet seasons. Phytoplankton concentrations were low (c. thousands of cells/mL) and declined as the wet season progressed. The dominant phytoplankton taxa were centric diatoms (Aulacoseira granulata and Aulacoseira distans) and chlorophytes (Scenedesmus and Pediastrum spp.), with chlorophytes becoming more dominant in the wet season. Biofilm diatoms were dominated by Melosira varians, and areal densities declined in the wet season when fast-growing pioneer diatom taxa (e.g. Achnanthidium minutissimum, Planothidium lanceolatum) and non-degraded Chlorophyll a concentrations increased, suggesting active phytobenthos growth in response to scour damage. Otherwise, a-phorbins were very abundant in river seston and biofilms indicating in situ Chlorophyll a degradation which may be typical of tropical river environments. The very large range of total suspended solids (reaching > 120 mg/L) and turbidity appears to be a key driver of photoautotrophs through control of light availability.

Conclusions – Hydrological change and associated turbidity conditions exceed nutrient influences on photoautotrophs at inter-seasonal scales in this part of the Red River. Inter-seasonal differences might be a useful measure for biomonitoring to help track how changes in suspended solids, a major water quality issue in tropical rivers, interact with other variables of interest.

Chlorophyll and carotenoid pigments, diatom biofilm, water quality monitoring, tropical river, biomonitoring


  • APHA (1995) Standard methods for the examination of water and wastewater 20th edition. Washington DC, USA.
  • Buchaca T., Catalan J. (2008) On the contribution of phytoplankton and benthic biofilms to the sediment record of marker pigments in high mountain lakes. Journal of Paleolimnology 40: 369–383.
  • Bussi G., Whitehead P.G, Bowes M.J., Read D.S., Prudhomme C., Dadson S.J. (2016) Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of the Total Environment 572: 1507–1519.
  • Cartaxana P., Jesus B., Brotas V. (2003) Pheophorbide and pheophytin a-like pigments as useful markers for intertidal microphytobenthos grazing by Hydrobia ulvae. Estuarine, Coastal and Shelf Science 58: 293–297.
  • Chen N., Bianchi T.S., Mckee B.A., Bland J.M. (2001) Historical trends of hypoxia on the Louisiana shelf: applications of pigments as biomarkers. Organic Geochemistry 32: 543–561.
  • Dang T.H., Coynel A., Orane D., Blanc G., Etcheber H., Le L.A. (2010) Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): Temporal variability and dam-reservoir impact. Science of the Total Environment 408: 4654–4664.
  • De Domitrovic Y.Z. (2002) Structure and variation of the Paraguay River phytoplankton in two periods of its hydrological cycle. Hydrobiologia 472: 177–196.
  • Desertová B., P. Puncochár P. (2011) Variability of phytoplankton biomass in a lowland river: response to climate conditions. Limnologica- Ecology and Management of Inland Waters 41: 160–166.
  • Duc T.A., Vachaud G., Bonnet M.P., Prieur N., Loi V.D. (2007) Experimental investigation and modelling approach of the impact of urban wastewater on a tropical river; a case study of the Nhue River, Hanoi, Viet Nam. Journal of Hydrology 334: 347–358.
  • Duong D.T. (1996) Taxonomy of Cyanobacteria of Vietnam. Agriculture Publishing House.
  • Duong D.T., VO H. (1997) Freshwater algae of Vietnam. Order: Chlorococcales. Agriculture Publishing House.
  • Duong T.T., Coste M., Feurtet-Mazel A., Dang D.K., Le T.P.Q. (2012) Responses and structural recovery of periphytic diatom communities after short-term disturbance in some rivers (Hanoi, Vietnam). Journal of Applied Phycology 24: 1053–1065.
  • Duong T.T., Le T.P.Q., Ho T.C., Vu T.T.H, Hoang T.T.H., Dang D.K., Lu X. (2014) Phytoplankton community structure and water quality of Red River, Vietnam. Journal of Vietnamese Environment 6: 27–33.
  • Echenique-Subiabre I., Dalle C., Duval C., Heath M.W., Couté A., Wood S.A., Humbert J.-F., Quiblier C. (2016) Application of a spectrofluorimetric tool (bbe BenthoTorch) for monitoring potentially toxic benthic cyanobacteria in rivers. Water Research 101: 341–350.
  • Edler L., Elbrächter M. (2010) The Utermöhl method for quantitative phytoplankton analysis. In: Karlson B., Cusack C., Bresnan, E. (eds) Microscopic and molecular methods for quantitative phytoplankton analysis: 13–20. Paris, Unesco. Available from [accessed 10 Apr. 2019].
  • Eulin A., Le Cohu R. (1998) Epilithic diatom communities during the colonization of artificial substrates in the River Garonne (France). Comparison with the natural communities. Archiv für Hydrobiologie 143: 79–106.
  • Everest A., Aslan D.C. (2016) Seasonal diatom density investigation of the Mersin rivers. World Journal of Research and Review (WJRR) 2: 21–30.
  • Ford R., Honeywill C. (2002) Grazing on intertidal microphytobenthos by macrofauna: is pheophorbide aa useful marker? Marine Ecology Progress Series 229: 33–42.
  • Gamier J., Billen G., Coste M. (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling. Limnology and Oceanography 40: 750–765.
  • Gómez N., Riera J.L., Sabater S. (1995) Ecology and morphological variability of Aulacoseira granulata (Bacillariophyceae) in Spanish reservoirs. Journal of Plankton Research 17: 1–16.
  • Hansson L.A. (1988) Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes 1. Limnology and Oceanography 33: 121–128.
  • Henry J.C., Fisher S.G. (2003) Spatial segregation of periphyton communities in a desert stream: causes and consequences for N cycling. Journal of the North American Benthological Society 22: 511–527.
  • Hoang H.T.T., Duong T.T., Nguyen K.T., Le Q.T.P., Luu M.T.N., Trinh D.A., Le A.H., Ho C.T., Dang K.D., Némery J., Orange D. (2018) Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam). Environmental Monitoring and Assessment 190: 67.
  • Jäger C.G., Diehl S. (2014) Resource competition across habitat boundaries: asymmetric interactions between benthic and pelagic producers. Ecological Monographs 84: 287–302.
  • Jüttner I., Bennion H., Carter C., Cox E.J., Ector L., Flower R., Jones V., Kelly M.G., Mann D.G., Sayer C., Turner J.A., Williams D.M. (2019) Freshwater Diatom Flora of Britain and Ireland. Amgueddfa Cymru - National Museum Wales. Available from [accessed 14 Mar. 2019].
  • Kahlert M., Mckie B.G. (2014) Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters. Environmental Science: Processes & Impacts 16: 2627–2634.
  • Kelly M., Cazaubon A., Coring E., Dell’uomo A., Ector L., Goldsmith B., Guasch H., Hürlimann J., Jarlman A., Kawecka B., Kwandrans J. (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215.
  • Kelly M., Whitton B.A. (1995) The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.
  • Komárek J., Anagnostidis K. (1989) Modern approach to the classification system of Cyanophytes. 4-Nostocales. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes: 247–345. Available from [accessed 14 Mar. 2019].
  • Komárek J., Anagnostidis K. (1999) Chroococcales. Cyanoprokaryota. Süßwasserflora von Mitteleuropa. Band 19/1. Spektrum Akademischer Verlag. pp. 1–548.
  • Komárek J., Anagnostidis K. (2005) Oscillatoriales. In: Büdel B., Krienitz L., Gärtner G., Schagerl M. (eds) Süßwasserflora von Mitteleuropa: 759. Elsevier/Spektrum.
  • Krammer K., Lange-Bertalot H. (1986–1991) Bacillariophyceae. Volumes: 1–4. Gustav. Fischer. Verlag.
  • Krammer K., Lange-Bertalot H. (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H., Gerloff J., Heynig H., Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa, Band 2/1. Gustav Fisher Verlag, Jena.
  • Krammer K., Lange-Bertalot H. (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H., Gerloff J., Heynig H., Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa, Band 2/2. Gustav Fisher Verlag, Jena.
  • Krammer K., Lange-Bertalot H. (1991) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H., Gerloff J., Heynig H., Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa. Band 2/3. Gustav Fisher Verlag, Stuttgart.
  • Krammer K., Lange-Bertalot H. (2004) Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae), Gomphonema. [second edition]. In: Ettl H., Gerloff J., Heynig H., Mollenhauer D. (eds) Süsswasserflora von Mitteleuropa. Spektrum Akademischer Verlad Heidelberg.
  • Kwandrans J., Eloranta P., Kawecka B., Wojtan K. (1998) Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology 10: 193–201.
  • Le T.P.Q., Billen G., Garnier J., Chau V.M. (2015) Long-term biogeochemical functioning of the Red River (Vietnam): past and present situations. Regional Environmental Change 15: 329–339.
  • Le T.P.Q., Le N.D., Dao V.N., Rochelle-Newall E., Nguyen T.M.H., Marchand C., Duong T.T., Phung T.X.B. (2018) Change in carbon flux (1960-2015) of the Red River (Vietnam). Journal of Environmental and Earth Sciences 77: 658.
  • Li L., Zheng B., Liu L. (2010) Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environmental Sciences 2: 1510–1524.
  • Lucas L.V., Thompson J.K., Brown L.R. (2009) Why are diverse relationships observed between phytoplankton biomass and transport time? Limnology and Oceanography 54: 381–390.
  • Luu T.N.M., Garnier J., Billen G., Orange D., Némery J., Le T.P.Q., Tran H.T., Le L.A. (2010) Hydrological regime and water budget of the Red River Delta (Northern Vietnam). Journal of Asian Earth Sciences 37: 219–228.
  • Moorhouse H., Read D.S., McGowan S., Wagner M., Roberts C., Armstrong L.K., Nicholls D.J.E., Wickham H.D., Hutchins M.G., Bowes M.J. (2018) Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high-performance liquid chromatography. Science of the Total Environment 624: 366–376.
  • Nardelli M.S., Bueno N.C., Ludwig T.A.V., Tremarin P.I., Bartozek E.C.R. (2014) Coscinodiscophyceae and Fragilariophyceae (Diatomeae) in the Iguaçu River, Paraná, Brazil. Acta Botanica Brasilica 28: 127–140.
  • Nguyen T. P. L. (2013) Legal Framework of Vietnam’s Water Sector: Update 2013 in Vietnam. ZEF Working Paper No.116, Center for Development Research. University of Bonn. Available from [accessed 14 Mar. 2019].
  • O’Farrell I. (1994) Comparative analysis of the phytoplankton of fifteen lowland fluvial systems of the River Plate Basin (Argentina). In: Descy J.P., Reynolds C.S., Padisák J. (eds) Phytoplankton in Turbid Environments: Rivers and Shallow Lakes: 109–117. The Netherlands, Springer.
  • Plenkovic-Moraj A., Kralj K., Gligora M. (2008) Effect of current velocity on diatom colonization on glass slides in unpolluted headwater creek. Periodicum Biologorum 110: 291–295.
  • Royer T.V., David M.B., Gentry L.E., Mitchell C.A., Starks K.M., Heatherly T., Whiles M.R. (2008) Assessment of chlorophyll-a as a criterion for establishing nutrient standards in the streams and rivers of Illinois. Journal of Environmental Quality 37: 437–447.
  • Simic S.B., Karadzic V.R., Cvijan M.V., Vasiljevic B.M. (2015) Algal communities along the Sava River. In: Milačic R., Scancar J., Paunović M. (eds.). The Sava River: 229–248. Berlin-Heidelberg, Springer-Verlag.
  • Soballe D., Kimmel B. (1987) A large‐scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68: 1943–1954.
  • Soininen J. (2005) Assessing the current related heterogeneity and diversity patterns of benthic diatom communities in a turbid and a clear water river. Aquatic Ecology 38: 495–501.
  • Szymczak-Żyla M., Kowalewska G.G., Louda J.W. (2008) The influence of microorganisms on chlorophyll a degradation in the marine environment. Limnology and Oceanography 53: 851–862.
  • Taylor K.G., Owens P.N. (2009) Sediments in urban river basins: a review of sediment–contaminant dynamics in an environmental system conditioned by human activities. Journal of Soils and Sediments 9: 281–303.
  • ter Braak C.J., Šmilauer P. (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca, Microcomputer Power.
  • Van Dam H., Mertens A., Sinkeldam J. (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.
  • Vasconselos V., Cerqueira M. (2001) Phytoplankton community of river Minho (international section). Limnetica 20: 135–141.
  • Vinh V.D., Ouillon S., Thanh T.D., Chu L. (2014) Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrology and Earth System Sciences 18: 3987–4005.
  • Vörösmarty C.J., Mcintyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S.E., Sullican C.A., Liermann C.R., Davies P.M. (2010) Global threats to human water security and river biodiversity. Nature 467: 555.
  • Wu N., Schmalz B., Fohrer N. (2010) Distribution of phytoplankton in a German lowland river in relation to environmental factors. Journal of Plankton Research 33: 807–820.
  • Yang X., Anderson N.J., Dong X., Shen J. (2008) Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long‐term eutrophication. Freshwater Biology 53: 1273–1290.
  • Zebek E. (2013) Seasonal dynamics of periphytic algae in the vicinity of the hydroelectric plant in the Pasłęka River (north-east Poland). Ecohydrology & Hydrobiology 13: 210–217.