Plant Ecology and Evolution 151(2): 194-208, doi: 10.5091/plecevo.2018.1359
Dispersal traits in the hyper-arid hot desert of the United Arab Emirates
expand article infoHatem A. Shabana, Teresa Navarro§, Ali El-Keblawy|
‡ Sharjah Seed Bank and Herbarium, Sharjah Research Academy, P.O. Box 60999, Sharjah, United Arab Emirates§ Departamento de Biología Vegetal, Universidad de Málaga, P.O. Box 59, 29080, Málaga, Spain| Department of Applied Biology, Faculty of Science, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
Open Access
Abstract

Background and aims – This study describes the dispersal traits of 302 species in five Afro-Arabian habitats from the hyper-arid hot desert of United Arabian Emirates (UAE).

Methods – Diaspore size (diaspora length) was studied in relation to growth forms, dispersal modes, presence of structures for long distance dispersal, APG IV groups, phytogeography and dispersal phenology using ANOVA and Pearson χ2 test-statistical analyses.

Results – Small diaspores were predominant (six orders of magnitude from 10-4 to 102). The major diaspores were found in Fabids phylogenetic APG IV group (1.80±0.41 cm) mainly trees and the minor in Commelinids (0.30±0.08 cm). The most dominant dispersal mode was semachory (43.7% of the total and 67.5% of the herbaceous species), followed by anemo-meteochory (28.8%) and barochory (23.8%). Semachores/barochores (67.5%) formed the largest groups from the Fabaceae, Poaceae, Boraginaceae, Brassicaceae and Amaranthaceae families. Savanna trees such as Acacia, Prosopis, Ziziphus sp. and Indigofera sp. produced large diaspores secondarily dispersed by vertebrates. Anemo-meteochoric species with small diaspores were predominantly semi-shrubs such as Haloxylon sp. Graminoids such as Stipa sp. and Stipagrostis sp., without structures for long-distance dispersal had diaspore appendages acted as “active drills” in soil cracks. Dryness (dry season) favours the efficient dispersion by the wind for the small shrub species with haired capsule (e.g. Aerva javanica), winged calyx (e.g. Astragalus squarrosus) or wings (e.g. Tribulus qatarensis). Most of the species studied (64.2%) dispersed in the dry season according to what was found in other arid region from the world. The longer dispersal phenology corresponded to Saharo-Arabian and Sudano-Decanian species which is related to the floristic richness of the study area. Species dispersal throughout the year indicates an important seed resource e.g. barochoric species with fleshy fruits or pods with nutrient structures (e.g. Senna italica and Indigofera sp.).

Conclusions – In the hyper-arid hot desert of UAE, the dispersal spectra are close to those recorded in other arid environments but with particularities due to the presence of African floristic elements.

Keywords
dispersal spectrum, dispersal traits, diaspore size, hyper-arid hot desert

References

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20. https://doi.org/10.1111/boj.12385
  • Böer B.B., Gliddon D. (1997) The geography and landforms of Abu Dhabi. ERWDA Internal Research Report No.4, Abu Dhabi, Environmental Research and Wildlife Development Agency 28.
  • Braun-Blanquet J. (1928) Vocabulaire de sociologie végétale. 3rd Ed. Montpellier, Roumégous et Déhan.
  • Boulos L. (2009) Flora of Egypt Checklist. Cairo, Al-Hadra Publishing.
  • Bullock S.H. (1995) Plant reproduction in Neotropical dry forests. In: Bullock S.H., Mooney H.A., Medina E. (eds) Seasonally dry tropical forests: 277–297. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511753398.011
  • Cain M.L., Milligan B.G., Strand A.E. (2000) Long-distance seed dispersal in plant populations. American Journal of Botany 87: 1217–1227. https://doi.org/10.2307/2656714
  • Cornelissen J.H.C., Lavorel S., Garnier E., Díaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335–380. https://doi.org/10.1071/BT02124
  • Daniels R.J.R., Gadgil M., Joshi N.V. (1995) Impact of human extraction of tropical humid forests in the Western Ghats in Uttara Kannada, South India. Journal of Applied Ecology 32: 866–874. https://doi.org/10.2307/2404826
  • Eig A. (1931) Les éléments et les groupes phytogéographiques auxiliaires dans la flore palestinienne. I. Texte. Repertorium specierum novarum regni vegetabilis Beihefte 63: 1–201.
  • Eig A. (1932) Les éléments et les groupes phytogéographiques auxiliaires dans la flore palestinienne. II. Tableaux analytiques. Repertorium specierum novarum regni vegetabilis Beihefte 63: 1–120.
  • El-Keblawy A., Hedhani E.M., Ghaili N.A., Al Hammadi H.A. (2005) Using an electronic database for evaluation of plant diversity in the UAE. In: Proceedings of the 6th annual conference for research funded by UAE University, Al-Ain, United Arab Emirates, April 24–26th 2005: 72–79.
  • El-Keblawy A., Abdelfattah M.A., Khedr A.H.A. (2015a) Relationships between landforms, soil characteristics and dominant xerophytes in the hyper-arid northern United Arab Emirates. Journal of Arid Environments 117: 28–36. https://doi.org/10.1016/j.jaridenv.2015.02.008
  • El-Keblawy A., Bhatt A., Gairola S. (2015b) Storage on maternal plants affects light and temperature requirements during germination in two small seeded halophytes in the Arabian deserts. Pakistan Journal of Botany 47: 1701–1708.
  • El‐Keblawy A. (2017) Light and temperature requirements during germination of potential perennial grasses for rehabilitation of degraded sandy Arabian deserts. Land Degradation & Development 28: 1687–1695. https://doi.org/10.1002/ldr.2700
  • El-Keblawy A., Gairola S. (2017) Dormancy regulating chemicals alleviate innate seed dormancy and promote germination of desert annuals. Journal of Plant Growth Regulation 36: 300–311. https://doi.org/10.1007/s00344-016-9640-z
  • Evenari M.L., Noy-Meir I., Goodall D.W. (1985) Hot deserts and arid shrublands. New York, Elsevier.
  • Finckh M. (2006) Klima- und Landnutzungs-getriebene Dynamik von Vegetationsmustern in Südmarokko. Berichte der Reinhold-Tüxen-Gesellschaft 18: 83–99.
  • Flora of Pakistan (2016) Flora of Pakistan [online]. Available from http://www.tropicos.org/Project/Pakistan [accessed 26 Jul. 2016].
  • Frankie G.W., Baker H.G., Opler P.A. (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology 62: 881–919. https://doi.org/10.2307/2258961
  • Ganeshaiah K.N., Shaanker R.U., Murali K.S., Shankar U., Bawa K.S. (1998) Extraction of non-timber forest products in the forests of Biligiri Rangan Hills, India. 5. Influence of dispersal mode on species response to anthropogenic pressures. Economic Botany 52: 316–319. https://doi.org/10.1007/BF02862150
  • García-Fayos P., Engelbrecht M., Bochet E. (2013) Post-dispersal seed anchorage to soil in semiarid plant communities, a test of the hypothesis of Ellner and Shmida. Plant Ecology 214: 941–952. https://doi.org/10.1007/s11258-013-0220-z
  • Gentry A.H. (1982) Patterns of neotropical plant species diversity. In: Hecht M.K., Wallace B., Prance G.T. (eds) Evolutionary Biology, vol. 15: 1–84. Boston, Springer. https://doi.org/10.1007/978-1-4615-6968-8_1
  • Good R. (1964) The geography of the flowering plants. 3rd Ed. London, Longmans Green & Co. Ltd.
  • Griz L.M.S., Machado I.C.S. (2001) Fruiting phenology and seed dispersal syndromes in caatinga, a tropical dry forest in northeast of Brazil. Journal of Tropical Ecology 17: 303–321. https://doi.org/10.1017/S0266467401001201
  • Gutterman Y., Shem-Tov S. (1997) Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Desert highlands of Israel, and its adhesion to the soil crust. Journal of Arid Environments 35: 695–705. https://doi.org/10.1006/jare.1996.0192
  • Harel D., Holzapfel C., Sternberg M. (2011) Seed mass and dormancy of annual plant populations and communities decreases with aridity and rainfall predictability. Basic and Applied Ecology 12: 674–684. https://doi.org/10.1016/j.baae.2011.09.003
  • Hughes L., Dunlop M., French K., Leishman M., Rice B., Rodgerson L., Westoby M. (1994) Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology 82: 933–950. https://doi.org/10.2307/2261456
  • Hulme P.E. (1994) Post-dispersal seed predation in grassland: its magnitude and sources of variation. Journal of Ecology 82: 645–652. https://doi.org/10.2307/2261271
  • IPNI (2016) International Plant Names Index. Available from http://www.ipni.org [accessed 26 Jul. 2016].
  • Jara‐Guerrero A., De la Cruz M., Méndez M. (2011) Seed dispersal spectrum of woody species in south Ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica 43: 722–730. https://doi.org/10.1111/j.1744-7429.2011.00754.x
  • Jongbloed M. (2003) The comprehensive guide to the wild flowers of the United Arab Emirates. Abu Dhabi, UAE, Environmental Research and Wildlife Development Agency.
  • Jurado E., Westoby M., Nelson D. (1991) Diaspore weight, dispersal, growth form and perenniality of Central Australian plants. Journal of Ecology 79: 811–828. https://doi.org/10.2307/2260669
  • Jurado E., Estrada E., Moles A. (2001) Characterizing plant attributes with particular emphasis on seeds in Tamaulipan thornscrub in semi-arid Mexico. Journal of Arid Environments 48: 309–321. https://doi.org/10.1006/jare.2000.0762
  • Karim F.M., Fawzi N.M. (2007) Flora of the United Arab Emirates. Al Ain, UAE, United Arab Emirates University.
  • Kefi S., Rietkerk M., Katul G.G. (2008) Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems. Theoretical population biology 74: 332–344. https://doi.org/10.1016/j.tpb.2008.09.004
  • Leishman M.R., Westoby M. (1994) Hypotheses on seed size: tests using the semiarid flora of Western New South Wales, Australia. The American Naturalist 143: 890–906. https://doi.org/10.1086/285638
  • Leishman M.R., Westoby M., Jurado E. (1995) Correlates of seed size variation: a comparison among five temperate floras. Journal of Ecology 83: 517–530. https://doi.org/10.2307/2261604
  • Leishman M.R., Wright I.J., Moles A.T., Westoby M. (2000) The evolutionary ecology of seed size. In: Fenner M. (ed.) Seeds: the ecology of regeneration in plant communities: 31–57. 2nd Ed. Wallingford, UK, CABI publishing. https://doi.org/10.1079/9780851994321.0031
  • Liu H.-L., Zhang D.-Y., Duan S.-M., Wang X.-Y., Song M.-F. (2014) The relationship between diaspore characteristics with phylogeny, life history traits, and their ecological adaptation of 150 species from the cold desert of Northwest China. The Scientific World Journal volume 2014: 510343. https://doi.org/10.1155/2014/510343
  • Lord J., Egan J., Clifford T., Jurado E., Leishman M., Williams D., Westoby M. (1997) Larger seeds in tropical floras: consistent patterns independent of growth form and dispersal mode. Journal of Biogeography 24: 205–211. https://doi.org/10.1046/j.1365-2699.1997.00126.x
  • Mazer S.J. (1989) Ecological, taxonomic, and life history correlates of seed mass among Indiana Dune angiosperms. Ecological Monographs 59: 153–175. https://doi.org/10.2307/2937284
  • Mazer S.J. (1990) Seed mass of Indiana Dune genera and families: taxonomic and ecological correlates. Evolutionary Ecology 4: 326–357. https://doi.org/10.1007/BF02270931
  • Miller A.G., Cope T.A. (1996) Flora of the Arabian Peninsula and Socotra volume I. Edinburgh, UK. Edinburgh University Press.
  • Nama K.S., Choudhary K. (2013) Dispersal pattern of some tree species of Mukundara Hills National Park. International Journal of Pure & Applied Bioscience 1(2): 24–30.
  • Navarro T., Alados C.L., Cabezudo B. (2006) Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain. Journal of Arid Environments 64: 298–322. https://doi.org/10.1016/j.jaridenv.2005.05.005
  • Navarro T., Pascual V., Alados C.L., Cabezudo B. (2009a) Growth forms, dispersal strategies and taxonomic spectrum in a semi-arid shrubland in SE Spain. Journal of Arid Environments 73: 103–112. https://doi.org/10.1016/j.jaridenv.2008.09.009
  • Navarro T., El Oualidi J., Taleb M.S., Pascual V., Cabezudo B. (2009b) Dispersal traits and dispersal patterns in an oro-Mediterranean thorn cushion plant formation of the eastern High Atlas, Morocco. Flora - Morphology, Distribution, Functional Ecology of Plants 204: 658–672. https://doi.org/10.1016/j.flora.2008.08.005
  • Pérez-Harguindeguy T., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P., Vaieretti M.V., Conti G., Staver A.C., Aquino S., Cornelissen J.H.C. (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of botany 61: 167–234. https://doi.org/10.1071/BT12225
  • Pritchard H.W., Daws M.I., Fletcher B.J., Gaméné C.S., Msanga H.P., Omondi W. (2004) Ecological correlates of seed desiccation tolerance in tropical African dryland trees. American Journal of Botany 91: 863–870. https://doi.org/10.3732/ajb.91.6.863
  • Puigdefábregas J., Pugnaire F.I. (1999) Plant survival in arid environments. In: Pugnaire F.I, Valladares F. (eds) Handbook of functional plant ecology: 381–406. New York & Basel, Marcel Dekker Inc.
  • Rodriguez C., Navarro T., El-Keblawy A. (2017) Effect of macroclimate and dune types on plant dispersal traits in the Mediterranean coastal dunes of southern Spain. Turkish Journal of Botany 41: 161–170.
  • Schöning C., Espadaler X., Hensen I., Roces F. (2004) Seed predation of the tussock-grass Stipa tenacissima L. by ants (Messor spp.) in south-eastern Spain: the adaptive value of trypanocarpy. Journal of Arid Environments 56: 43–61. https://doi.org/10.1016/S0140-1963(03)00024-7
  • Seghieri J., Vescovo A., Padel K., Soubie R., Arjounin M., Boulain N., de Rosnay P., Galle S., Gosset M., Mouctar A.H., Peugeot C., Timouk F. (2009) Relationships between climate, soil moisture and phenology of the woody cover in two sites located along the West African latitudinal gradient. Journal of Hydrology 375: 78–89. https://doi.org/10.1016/j.jhydrol.2009.01.023
  • Strykstra R.J., Bekker R.M., Van Andel J. (2002) Dispersal and life span spectra in plant communities: a key to safe site dynamics, species coexistence and conservation. Ecography 25: 145–160. https://doi.org/10.1034/j.1600-0587.2002.250203.x
  • Thompson K., Band S.R., Hodgson J.G. (1993) Seed size and shape predict persistence in soil. Functional Ecology 7: 236–241. https://doi.org/10.2307/2389893
  • Thomson F.J. Letten A.D. Tamme R. Edwards W., Moles A.T. (2018) Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species? New Phytologist 217: 407–415. https://doi.org/10.1111/nph.14735
  • UAE Ministry of Energy (2006) The United Arab Emirates Initial National Communication to the United Nations Framework Convention on Climate Change. United Arab Emirates, Ministry of Energy.
  • UAE Ministry of Energy (2012) 3rd National Communication under the United Nations Framework Convention on Climate Change. United Arab Emirates, Ministry of Energy.
  • UAE Ministry of Environment & Water (2015) State of Environment Report United Arab Emirates 2015. United Arab Emirates, Ministry of Environment & Water.
  • van der Pijl L. (1969) Principles of dispersal in higher plants. 1st Ed. Berlin, Springer-Verlag.
  • van der Pijl L. (1972) Functional considerations and observations on the flowers of some Labiatae. Blumea 20: 93–103.
  • van Rheede van Oudtshoorn K., van Rooyen M.W. (1999) Dispersal biology of desert. Adaptations of desert organisms. New York, Berlin & Heidelberg, Springer-Verlag. https://doi.org/10.1007/978-3-662-03561-0
  • van Rooyen M.W., Theron G.K., Grobbelaar N. (1990) Life form and dispersal spectra of the flora of Namaqualand, South Africa. Journal of Arid Environments 19: 133–145.
  • Venable D.L., Levin D.A. (1985) Ecology of achene dimorphism in Heterotheca latifolia: I. Achene structure, germination and dispersal. Journal of Ecology 73: 133–145. https://doi.org/10.2307/2259774
  • Wang J.H., Baskin C.C., Cui X.L., Du G.Z. (2009) Effect of phylogeny, life history and habitat correlates on seed germination of 69 arid and semi-arid zone species from northwest China. Evolutionary Ecology 23: 827–846. https://doi.org/10.1007/s10682-008-9273-1
  • Weiher E., van der Werf A., Thompson K., Roderick M., Garnier E., Eriksson O. (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science 10: 609–620. https://doi.org/10.2307/3237076
  • Wheelwright N.T., Janson C.H. (1985) Colors of fruit displays of bird-dispersed plants in two tropical forests. The American Naturalist 126: 777–799. https://doi.org/10.1086/284453
  • Willson M.F., Rice B.L., Westoby M. (1990) Seed dispersal spectra: a comparison of temperate plant communities. Journal of Vegetation Science 1: 547–562. https://doi.org/10.2307/3235789
  • Willson M.F. (1993) Dispersal mode, seed shadows, and colonization patterns. In: Fleming T.H., Estrada A. (eds) Frugivory and seed dispersal: ecological and evolutionary aspects: 261–280. Dordrecht, Kluwer Academic Publishers.
  • Zohary M. (1973) Geobotanical foundations of the Middle East. Stuttgart, Fischer Verlag.