Plant Ecology and Evolution 151(2): 161-174, doi: 10.5091/plecevo.2018.1419
Diversification of Galianthe species (Rubiaceae) in the Neotropical seasonally dry forests: a case study of a mainly subshrubby genus
expand article infoJavier Elias Florentín, Marcelo D. Arana§, Darién E. Prado|, Juan J. Morrone, Roberto M. Salas#
‡ Instituto de Botánica del Nordeste (CONICET-UNNE), Sargento Cabral 2131, c.c. 209, C.P. 3400, Corrientes, Argentina§ Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina| Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, IICAR-CONICET, P.O. Box N°14, S2125ZAA Zavalla, Argentina¶ Museo de Zoología “Alfonso L. Herrera”, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico# Instituto de Botánica del Nordeste, IBONE, CONICET, Sargento Cabral 2131, cc 209, CP 3400, Corrientes, Argentina
Open Access
Abstract

Aim ‒ To evaluate the current distribution of the species of the genus Galianthe by track analysis, and to establish the distributional patterns based on the available tectonic information and the biogeographical regionalization of the Neotropical region.

Methods ‒ A total of 2680 geographical records of 55 species were analysed, representing 100% of the species assigned to Galianthe. Individual tracks were obtained for each species by plotting localities and connecting them by minimum-spanning trees. Generalized tracks and nodes were determined from the spatial overlap among individual tracks. Individual and generalized tracks and nodes were geographically located using DIVA-GIS. Generalized tracks and nodes were superimposed on two layers, one of them with the biogeographical provinces of the Neotropical region, and the other with the distribution of Neotropical seasonally dry forests.

Results ‒ Five generalized tracks and four nodes were identified, all located within the Brazilian and Chacoan subregions. These nodes coincide with almost all fragments of Neotropical seasonally dry forests.

Main conclusions ‒ Our results demonstrate the intimate relationship of the ancestral biota of Galianthe with the fragments of Neotropical seasonally dry forests, suggesting that they could serve as refugia during unfavourable geological periods and, therefore, actively influence the current distribution of their species. In addition, the early dispersal of the species, along with the various vicariant events such as the rise of the Andes, the cooling and aridification during the Oligocene-Miocene, the formation of the Chacoan subregion, and the alluvial dynamics during the Pliocene-Holocene could favoured adaptive radiation of Galianthe species.

Keywords
distribution, Spermacoce, biogeography, nodes, track analysis, vicariance

References

  • Arcand N.N., Ranker T.A. (2008) Conservation biology. In: Ranker T.A., Haufler C.H. (eds) The biology and evolution of ferns and lycophytes: 257–283. New York, Cambridge University Press. https://doi.org/10.1017/CBO9780511541827.011
  • Arana M.D., Morrone J.J., Ponce, M.M., Oggero A.J. (2011) Licofitas (Equisetopsida: Lycopodiidae) de las sierras centrales de Argentina: un enfoque Panbiogeográfico. Gayana Botánica 68: 16–21. https://doi.org/10.4067/S0717-66432011000100002
  • Arana M.D., Larsen C., Ponce M.M. (2016) Revisión y análisis panbiogeográfico de las Hymenophyllaceae de las Yungas meridionales de Argentina (Selva Tucumano-Boliviana). Rodriguésia 67: 55–75. https://doi.org/10.1590/2175-7860201667105
  • Banda-R K., Delgado-Salinas A., Dexter K.G., Linares-Palomino R., Oliveira-Filho A., Prado D.E., Pullan M., Quintana C., Riina R., Rodríguez G.M et al. (2016) Plant diversity patterns in Neotropical dry forests and their conservation implications. Science 353: 1383–1387. https://doi.org/10.1126/science.aaf5080
  • Bremer B., Eriksson T. (2009) Time tree of Rubiaceae: phylogeny and dating the family, subfamilies and tribes. International Journal of Plant Sciences 170: 766–793. https://doi.org/10.1086/599077
  • Cabral E.L., Bacigalupo N.M. (1997) Revisión del género Galianthe subg. Ebelia stat. nov. (Rubiaceae: Spermacoceae). Annals of the Missouri Botanical Garden 84: 857–877. https://doi.org/10.2307/2992031
  • Cabral E.L. (2002) Revisión del género Galianthe Griseb. (Rubiaceae). PhD thesis, Universidad Nacional del Nordeste, Corrientes, Argentina.
  • Cabral E.L. (2009) Revisión sinóptica de Galianthe subgen. Galianthe (Rubiaceae: Spermacoceae), con una sección nueva. Annals of the Missouri Botanical Garden 96: 27–60. https://doi.org/10.3417/2006193
  • Cabrera A.L., Willink A. (1973) Biogeografía de América Latina. Serie Biología 13. Washington DC, Secretaría General de la Organización de los Estados Americanos.
  • Collevatti R.G., Terribile L.C., de Oliveira G., Lima-Ribeiro M.S., Rangel F.T., Diniz-Filho J.F. (2013) Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography 40: 345–358. https://doi.org/10.1111/jbi.12005
  • Craw R.C., Grehan J.R., Heads M.J. (1999) Panbiogeography: tracking the history of the life. Oxford Biogeography Series 11. New York, Oxford University Press.
  • Crisci J.V., Freire S.E., Sancho G., Katinas L. (2001) Historical biogeography of the Asteraceae from Tandilia and Ventania Mountain ranges. Caldasia 23: 21–41.
  • Ferro I., Morrone J.J. (2014) Biogeographical transition zones: a search for conceptual synthesis. Biological Journal of the Linnean Society 113: 1–12. https://doi.org/10.1111/bij.12333
  • Florentín J.E., Cabaña Fader A.A., Salas R.M, Janssens S., Dessein S., Cabral E.L (2017a) Morphological and molecular data confirm the transfer of homostylous species in the typically distylous genus Galianthe (Rubiaceae), and the description of the new species Galianthe vasquezii from Peru and Colombia. PeerJ 5: e4012. https://doi.org/10.7717/peerj.4012
  • Florentín J.E., Nuñez Florentín M., Cabral E.L (2017b) A synopsis of Galianthe (Rubiaceae) in Rio Grande do Sul, Southern Brazil, and a new endemic species from Serra Geral. Acta Botanica Brasilica 31: 619–638. https://doi.org/10.1590/0102-33062017abb0135
  • Gentry A.H. (1995) Diversity and floristic composition of Neotropical dry forests. In: Bullock S.H., Medina H.A., Medina E. (eds) Seasonally dry tropical forests: 146–194. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511753398.007
  • Google Earth (2015) Available from: https://www.google.com.ar/intl/es/earth/ [accessed 5 Apr. 2017].
  • Graham A., Dilcher D. (1995) The Cenozoic record of tropical dry forest in northern Latin America and the southern United States. In: Bullock S.H., Medina H.A., Medina E. (eds) Seasonally dry tropical forest: 124–145. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511753398.006
  • Groeninckx I., Dessein S., Ochoterena H., Persson C., Motley T.J., Kårehed J., Bremer B., Huysmans S., Smets E. (2009) Phylogeny of the herbaceous tribe Spermacoceae (Rubiaceae) based on plastid DNA data. Annals of the Missouri Botanical Garden 96: 109–132. https://doi.org/10.3417/2006201
  • Hijmans R.J. (2015) DIVA-GIS, a geographic information system for the analysis of biodiversity data. Version 7.5. Available from http://www.diva-gis.org/ [accessed 17 Oct. 2017].
  • Hooghiemstra H., Ran E.T.H. (1994) Late Pliocene–Pleistocene high resolution pollen sequence of Colombia: an overview of climatic change. Quaternary International 21: 63–80. https://doi.org/10.1016/1040-6182(94)90021-3
  • Hooghiemstra H., Cleef A.M. (1995) Pleistocene climatic change and environmental and generic dynamics in the north Andean montane forest and paramo. In: Churchill S.P., Balslev H., Forero E., Luteyn J.L. (eds) Biodiversity and conservation of neotropical montane forests: 35–49. New York, New York Botanical Garden.
  • Hooghiemstra H., van der Hammen T. (1998) Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Science Reviews 44: 147–183. https://doi.org/10.1016/S0012-8252(98)00027-0
  • Hoorn C., Wesselinhg H., ter Steege H., Bermudez M.A., Mora A., Sevink J., Sanmartín I., Meseguer-Sanchez A., Anderson C.L., Figueiredo J.P., Jaramillo C., Riff D., Negri F.R., Hooghiemstra H., Lundberg J., Stadler T., Särkinen T., Antonelli A. (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931. https://doi.org/10.1126/science.1194585
  • Iganci J.R.V., Heiden G., Miotto S.T.S., Pennington R.T. (2011) Campos de Cima da Serra: the Brazilian Subtropical Highland Grasslands show an unexpected level of plant endemism. Botanical Journal of the Linnean Society 167: 378–393. https://doi.org/10.1111/j.1095-8339.2011.01182.x
  • Janssens S.B., Groeninckx I., De Block P.J., Verstraete B., Smets E.F., Dessein S. (2016) Dispersing towards Madagascar: biogeography and evolution of the Madagascan endemics of the Spermacoceae tribe (Rubiaceae). Molecular Phylogenetics and Evolution 95: 58–66. https://doi.org/10.1016/j.ympev.2015.10.024
  • Linares-Palomino R., Oliveira-Filho A.T., Pennington R.T. (2011) Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In: Dirzo R., Young H.S., Ceballos G., Mooney H.A. (eds) Seasonally dry tropical forests: ecology and conservation: 3–21. Washington D.C, Island Press. https://doi.org/10.5822/978-1-61091-021-7_1
  • Martínez G., Arana M.D., Oggero A.J., Natale E.S. (2017) Biogeographical relationships and new regionalization of high altitude grasslands and woodlands of the central Pampean ranges (Argentina), based on vascular plants and vertebrates. Australian Systematic Botany 29: 473–488. https://doi.org/10.1071/SB16046
  • Miguel-Talonia C., Escalante T. (2013) Los nodos: el aporte de la panbiogeografía al entendimiento de la biodiversidad. Biogeografía 6: 30–42.
  • Mogni V.Y., Oakley L.J., Maturo H.M., Galetti L.A., Prado D.E. (2015a) Biogeografía y florística de los Bosques Secos Estacionales Neotropicales (BSEN). Revista OKARA - Geografia em Debate 9: 275–296.
  • Mogni V.Y., Oakley L.J., Prado D.E. (2015b) The distribution of woody legumes in neotropical dry forests: the Pleistocene Arc Theory 20 years on. Edinburgh Journal of Botany 72: 35–60. https://doi.org/10.1017/S0960428614000298
  • Mooney H.A., Bullock S.H., Medina E. (1995) Introduction. In: Bullock S.H., Mooney H.A., Medina E. (eds) Seasonally dry tropical forests: 1–8. Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511753398.001
  • Morrone J.J., Espinosa D. (1998) La relevancia de los atlas biogeográficos para la conservación de la biodiversidad mexicana. Ciencia (México) 49: 12–16.
  • Morrone J.J. (2000) What is the Chacoan subregion? Neotrópica 46: 51–68.
  • Morrone J.J. (2009) Evolutionary biogeography: an integrative approach with case studies. New York, Columbia University Press.
  • Morrone J.J., Escalante T. (2009) Diccionario de biogeografía. Mexico City, Las Prensas de Ciencias.
  • Morrone J.J. (2014b) Cladistic biogeography of the Neotropical region: Identifying the main events in the diversification of the terrestrial biota. Cladistics 30: 202–214. https://doi.org/10.1111/cla.12039
  • Morrone J.J. (2017) Neotropical biogeography: regionalization and evolution. Boca Raton, CRC Press.
  • Navarro G. (2005) Unidades de Vegetación de la Reserva de Biosfera del Chaco Paraguayo. In: Rumiz D., Villalba L. (eds) Unidades Ambientales de la Reserva de Biosfera del Chaco Paraguayo: 25–50. World Conservation Society (WCS Bolivia) & Fundación para el Desarrollo Sustentable del Chaco Paraguayo (DesDelChaco, Paraguay).
  • Nihei S.S., Carvalho C.J.B. (2007) Systematics and biogeography of Polietina Schnabl and Dziedzicki (Diptera, Muscidae): Neotropical area relationships and Amazonia as a composite area. Systematic Entomology 32: 477–501. https://doi.org/10.1111/j.1365-3113.2006.00376.x
  • Pennington R.T., Lavin M., Prado D.E., Pendry C.A., Pell S.K., Butterworth C.A. (2004) Historical climate change and speciation: Neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society B Biological Sciences 359: 515–537. https://doi.org/10.1098/rstb.2003.1435
  • Prado D.E., Gibbs P.E. (1993) Patterns of species distributions in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden 80: 902–927. https://doi.org/10.2307/2399937
  • Prado D.E. (1995) Selva pedemontana: contexto regional y lista florística de un ecosistema en peligro. In: Brown A.D., Grau H.R. (eds) Investigación, conservación y desarrollo en selvas subtropicales de montaña: 19–52. Tucumán, Proyecto de Desarrollo Agroforestal.
  • Prado D.E. (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinburgh Journal of Botany. 57: 437–461.
  • Prado D.E. (2003) As caatingas da América do Sul. In: Leal I.R., Tabarelli M., Silva J.M.C. (eds) Ecologia e conservação da Caatinga: 3–74. Recife, Federal University of Pernambuco UFPE.
  • Ramella L., Spichiger R. (1989) Interpretación preliminar del medio físico y de la vegetación del Chaco Boreal. Contribución al estudio de la flora y de la vegetación del Chaco. I. Candollea 44: 639–680.
  • Rizzini C.T. (1976) Tratado de Fitogeografia do Brasil: aspectos ecológicos. São Paulo, HUCITEC & Ed. da Universidade de São Paulo.
  • Salas R.M., Viana P.L., Cabral E.L., Dessein S., Janssens S. (2015) Carajasia (Rubiaceae), a new and endangered genus from Carajás mountain range, Pará, Brazil. Phytotaxa 206: 14–29. https://doi.org/10.11646/phytotaxa.206.1.4
  • Särkinen T., Iganci J.R.V., Linares-Palomino R., Simon M.F., Prado D.E. (2011) Forgotten forests – issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study. BMC Ecology: 11: 27. https://doi.org/10.1186/1472-6785-11-27
  • Simon M.F., Grether R., de Queiroz L.P., Skema C., Pennington R.T., Hughes C.E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptation to fire. Proceedings of the National Academy of Sciences of the United States of America 106: 20359–20364. https://doi.org/10.1073/pnas.0903410106
  • van der Hammen T., Werner J.H., van Dommelen H. (1973) Palynological record of the upheaval of the northern Andes: a study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany and Palynology 16: 1–122. https://doi.org/10.1016/0034-6667(73)90031-6
  • van der Hammen T. (1974) The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1: 3–26. https://doi.org/10.2307/3038066
  • van der Hammen T., Cleef A.M. (1986) Development of the high Andean paramo flora and vegetation. In: Vuilleumier F., Monasterio M. (eds) High altitude tropical biogeography: 153–201. Oxford, Oxford University Press.
  • Vieira Zanella F.C. (2011) Evoluçâo da biota diagonal de formaçôes abertas secas da America do Sul. In: Carvalho C.J.B., Almeida E.A.B. (eds) Biogeografia da América do Sul: 198–221. Sao Paulo, Padrões & Processos.
  • Werneck F.P., Costa G.C., Colli G.R., Prado D.E., Sites J.W. (2011) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecology and Biogeography 20: 272–288. https://doi.org/10.1111/j.1466-8238.2010.00596.x
  • Wijninga V.M. (1996) Palynology and paleobotany of the Early Pliocene section Río Frío 17 (Cordillera Oriental, Colombia): biostratigraphical and chronostratigraphical implications. Review of Palaeobotany and Palynology 92: 329–350. https://doi.org/10.1016/0034-6667(95)00102-6