Plant Ecology and Evolution 154(1): 39-48, doi: 10.5091/plecevo.2021.1747
Poor fruit set due to lack of pollinators in Aristolochia manshuriensis (Aristolochiaceae)
expand article infoOlga V. Nakonechnaya, Olga G. Koren, Vasilii S. Sidorenko, Sergey A. Shabalin, Tatyana O. Markova, Alexander V. Kalachev§
‡ Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia§ A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
Open Access
Abstract

Background and aims – Interactions of insects with trap flowers of Aristolochia manshuriensis, a relic woody liana with fragmented natural populations from south-eastern Russia, were studied. Pollination experiments were conducted to identify the causes of the poor fruit set in this plant.

Material and methods – The study was carried out at two ex situ sites within the natural range of A. manshuriensis in the suburban zone of the city of Vladivostok (Russia). The floral morphology was examined to verify how it may affect the process of pollination in this species. To test for a probability of self-pollination, randomly selected flowers at the female phase of anthesis (day 1 of limb opening) were hand-pollinated with pollen from the same plant. The daily insect visitation was studied. The pollen limitation coefficient and the number of visitors to the flowers were determined. To identify insects that lay eggs on the flowers, the insects were reared from eggs collected from fallen flowers. Both caught and reared insects were identified.

Key results – The floral morphology and the colour pattern of A. manshuriensis are adapted to temporarily trap insects of a certain size. The hand-pollination experiment showed that flowers of this plant are capable of self-pollination by geitonogamy and require a pollinator for successful pollination. The positive value (2.64) for the pollen limitation coefficient indicates a higher fruit set after hand-pollination compared to the control without pollination. The number of visitors to the flowers was low (0.17 visitors per flower per day). Insects from three orders were observed on the flowers: Diptera (up to 90.9%), Coleoptera (8.3%), and Hymenoptera (0.8%). Four species of flies (Scaptomyza pallida, Drosophila transversa (Drosophilidae), Botanophila fugax, and Botanophila sp. 1 (Anthomyiidae)) are capable of transferring up to 2500–4000 pollen grains on their bodies and can be considered as pollinators of A. manshuriensis. Data of the rearing experiment indicate that flies of the families Drosophilidae (S. pallida, D. transversa), Chloropidae (Elachiptera tuberculifera, E. sibirica, and Conioscinella divitis), and Anthomyiidae (B. fugax, B. sp. 1) use A. manshuriensis flowers to lay eggs. Beetles were also collected from the flowers, but they were probably not involved in pollination, because no pollen grains were observed on them during our study.

Conclusions – Pollinators of A. manshuriensis include mainly Diptera that lay eggs on the flowers. The poor fruit set (2%) in A. manshuriensis is associated with pollen limitation due to the lack of pollinators, as the number of visitors to flowers was extremely low. This may be due to the fact that the flowers of this species are highly specialized on insects of a certain size for pollination.

Keywords
Aristolochia manshuriensis, fruit set, insect rearing, plant-insect interactions, pollination

References

  • Akulova Z.V. & Aleksandrova E.K. 1996. Aristolochiales. In: Budantsev L.N. (ed.) Plant resources of Russia and adjacent countries: 103–104. Mir i sem’ya-95, St. Petersburg.
  • Aliscioni S.S., Achler A.P. & Torretta J.P. 2017. Floral anatomy, micromorphology and visitor insects in three species of Aristolochia L. (Aristolochiaceae). New Zealand Journal of Botany 55 (4): 496–513. https://doi.org/10.1080/0028825X.2017.1380051
  • Berjano R. 2006. Biología de la reproducción de dos especies mediterráneas de Aristolochia. PhD thesis, Universidad de Sevilla, Spain.
  • Berjano R., Arista M., Ortiz P.L. & Talavera S. 2011. Persistently low fruiting success in the Mediterranean pipevine Aristolochia baetica (Aristolochiaceae): a multi-year study. Plant Biology 13(1): 109–117. https://doi.org/10.1111/j.1438-8677.2010.00396.x
  • Berjano R., Ortiz P.L., Arista M. & Talavera S. 2009. Pollinators, flowering phenology and floral longevity in two Mediterranean Aristolochia species, with a review of flower visitor records for the genus. Plant Biology 11(1): 6–16. https://doi.org/10.1111/j.1438-8677.2008.00131.x
  • Berjano R., Vega C., Arista M., Ortiz P.L. & Talavera S. 2006. A multi-year study of factors affecting fruit production in Aristolochia paucinervis (Aristolochiaceae). American Journal of Botany 93(4): 599–606. https://doi.org/10.3732/ajb.93.4.599
  • Bliss B.J., Wanke S., Barakat A., et al. 2013. Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology 13: 13. https://doi.org/10.1186/1471-2229-13-13
  • Brantjes B.M. 1980. Flower morphology of Aristolochia species and the consequences for pollination. Acta Botanica Neerlandica 29: 212–213.
  • Burgess K.S., Singfield J., Melendez V. & Kevan P.G. 2004. Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Annals of the Missouri Botanical Garden 91: 346–356.
  • Chevallier A. 1996. The encyclopedia of medicinal plants. Dorling Kindersley Chronica Botanica Co., Waltham.
  • Cronquist A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.
  • Disney R.H.L. & Sakai S. 2001. Scuttle flies (Diptera: Phoridae) whose larvae develop in flowers of Aristolochia (Aristolochiaceae) in Panama. European Journal of Entomology 98: 367–373.
  • González F. & Pabón-Mora N. 2015. Trickery flowers: the extraordinary chemical mimicry of Aristolochia to accomplish deception to its pollinators. New Phytologist 206(1): 10–13. https://doi.org/10.1111/nph.13328
  • González F., Wagner S.T., Salomo K., et al. 2014. Present trans-Pacific disjunct distribution of Aristolochia subgenus Isotrema (Aristolochiaceae) was shaped by dispersal, vicariance and extinction. Journal of Biogeography 41(2): 380–391. https://doi.org/10.1111/jbi.12198
  • Hall D. & Brown B. 1993. Pollination of Aristolochia littoralis (Aristolochiales: Aristolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Annals of the Entomological Society of America 86(5): 609–613. https://doi.org/10.1093/aesa/86.5.609
  • Hilje I. 1984. Fenologia y ecologia floral de Aristolochia grandiflora Swartz. (Aristolochiaceae) en Costa Rica. Brenesia 22: 1–44.
  • Hime N.D.C. & Costa E.D.L. 1985. Sobre Megaselia (M.) aristolochiae n. sp. (Diptera, Phoridae) cujas larvas se criam nas flores de Aristolochia labiata Willd. (Aristolochiaceae). Revista Brasileira de Biologia 45: 621–625.
  • Hipólito J., Viana B.F., Selbach-Schnadelbach A., Galetto L. & Kevan P.G. 2012. Pollination biology and genetic variability of a giant perfumed flower (Aristolochia gigantea Mart. and Zucc., Aristolochiaceae) visited mainly by small Diptera. Botany 90: 815–829. https://doi.org/10.1139/b2012-047
  • Faegri K. & van der Pijl L. 1979. The principles of pollination ecology. Third edition revised. Pegramon Press, Toronto.
  • Kitagawa M. 1979. Neo-Lineamenta Florae Manshuricae. J. Cramer, Hirchberg.
  • Koren O.G., Nakonechnaya O.V. & Zhuravlev Yu.N. 2009. Genetic structure of natural populations of the relict species Aristolochia manshuriensis (Aristolochiaceae) in disturbed and intact habitats. Russian Journal of Genetics 45(6): 678–684.
  • Kozhevnikov A.E., Korkishko R.I. & Kozhevnikova Z.V. 2005. Current state and the problems of flora conservation in the southwestern part of Primorsky Krai. Komarovskie Chteniya (Komarov Readings) 51: 101–123. [in Russian].
  • Kurentsova G.E. 1968. Relic plants of Primorye. Nauka, Leningrad.
  • Martin K.R., Moré M., Hipólito J., Charlemagne S., Schlumpberger B.O. & Raguso R.A. 2017. Spatial and temporal variation in volatile composition suggests olfactory division of labor within the trap flowers of Aristolochia gigantea. Flora 232: 153–168. https://doi.org/10.1016/j.flora.2016.09.005
  • Murugan R., Shivanna K.R. & Rao R.R. 2006. Pollination biology of Aristolochia tagala, a rare species of medicinal importance. Current Science 91: 795–798.
  • Nakonechnaya O.V. & Nesterova S.V. 2013. Primitive features and adaptations of relict liana (Aristolochia manshuriensis). The Bulletin of KrasGAU 1: 40–47.
  • Nakonechnaya O.V., Sidorenko V.S., Koren O.G., Nesterova S.V. & Zhuravlev Yu.N. 2008. Specific features of pollination in the manchurian birthwort, Aristolochia manshuriensis. Biology Bulletin 35: 459–465. https://doi.org/10.1134/S106235900805004X
  • Nakonechnaya O.V., Zhuravlev Yu.N., Bulgakov V.P., Koren O.G. & Sundukova E.V. 2014. Genus Aristolochia of the Russian Far East (Aristolochia manshuriensis Kom. and A. contorta Bunge). Dalnauka, Vladivostok.
  • Nakonechnaya O.V., Nesterova S.V., Voronkova N.M. & Kholina A.B. 2015. Ontomorphogenesis of Aristolochia fimbriata Cham. (Aristolochiaceae) in protected ground. The Bulletin of KrasGAU 1: 50–57.
  • Nakonechnaya O.V., Nesterova S.V. & Voronkova N.M. 2018. Germination of Aristolochia seeds (Aristolochiaceae). Moscow University Biological Sciences Bulletin 73(4): 209–216.
  • Nesterova S.V. 2008. Aristolochia contorta. In: Kozhevnikov A.E. (ed.) Red Data Book of Primorsky Krai Plants. Apel’sin, Vladivostok.
  • Oelschlägel B., Gorb S., Wanke S. & Neinhuis C. 2009. Structure and biomechanics of trapping flower trichomes and their role in the pollination biology of Aristolochia plants (Aristolochiaceae). New Phytologist 184(4): 988–1002. https://doi.org/10.1111/j.1469-8137.2009.03013.x
  • Oelschlägel B., Nuss M., von Tschirnhaus M., et al. 2015. The betrayed thief – the extraordinary strategy of Aristolochia rotunda to deceive its pollinators. New Phytologist 206(1): 342–351. https://doi.org/10.1111/nph.13210
  • Oelschlägel B., von Tschirnhaus M., Nuss M., et al. 2016. Spatio‐temporal patterns in pollination of deceptive Aristolochia rotunda L. (Aristolochiaceae). Plant Biology 18: 928–937. https://doi.org/10.1111/plb.12503
  • Pabón-Mora N., Suárez-Baron H., Ambrose B.A. & González F. 2015. Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science 6: 1095. https://doi.org/10.3389/fpls.2015.01095
  • Pfeifer H.W. 1966. Revision of the North and Central American hexandrous species of Aristolochia (Aristolochiaceae). Annals of the Missouri Botanical Garden 53(2): 115–196. https://doi.org/10.2307/2394940
  • Proctor M., Yeo P. & Lack A. 1996. The natural history of pollination. Timber Press, Portland.
  • R Core Team 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org [accessed 13 Oct. 2020].
  • Razzak M.A., Ali T. & Ali S.I. 1992. The pollination biology of Aristolochia bracteolata Lamk. (Aristolochiaceae). Pakistan Journal of Botany 24(1): 79–87.
  • Robinsohn I. 1924. Die Farbungsreaction der Narben, Stigmatochromie, als morphologische Blutenuntersuchungen­methode. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 133(6): 181–211.
  • Rulik B., Wanke S., Nuss M. & Neinhuis C. 2008. Pollination of Aristolochia pallida Willd. (Aristolochiaceae) in the Mediterranean. Flora 203(2): 175–184.
  • Sakai S. 2002. Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. American Journal of Botany 89(3): 527–534. https://doi.org/10.3732/ajb.89.3.527
  • Slizik L.N. 1978a. Rare and valuable species of arborescent lianas of Primorskii Kray, resources of their conservation and reproduction. In: Konovalenko V.G. & Smirnov O.A. (eds) Vladivostok, current problems of conservation in the Far East: 47–55. DVNTs Akad. Nauk SSSR, Vladivostok.
  • Slizik L.N. 1978b. Specific features of seasonal growth rhythm in some relic arborescent lianas of the Primorye flora. In: Smirnova O.A. (ed.) Rare and disappearing arborescent plants in the South of Far East Region (biology, ecology, karyology): 105–112. DVNTs Akad. Nauk SSSR, Vladivostok.
  • Valdivia C.E. & Niemeyer H.M. 2007. Noncorrelated evolution between herbivore- and pollinator-linked features in Aristolochia chilensis (Aristolochiaceae). Biological Journal of the Linnean Society 91(2): 239–245. https://doi.org/10.1111/j.1095-8312.2007.00796.x
  • Vamosi J.C., Knight T.M., Steets J.A., Mazer S.J., Burd M. & Ashman T.L. 2006. Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences 103(4): 956–961. https://doi.org/10.1073/pnas.0507165103
  • Vogel S. 1990. The role of scent glands in pollination: on the structure and function of osmophores. Smithsonian Institution Libraries, Washington, D.C.
  • Wolda H. & Sabrosky C.W. 1986. Insect visitors to two forms of Aristolochia pilosa in Las Cumbres, Panama. Biotropica 18: 295–299. https://doi.org/10.2307/2388572