Plant Ecology and Evolution 153(1): 67-81, doi: 10.5091/plecevo.2020.1565
The hyperdominant tropical tree Eschweilera coriacea (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French Guiana
expand article infoMyriam Heuertz, Henri Caron§, Caroline Scotti-Saintagne|, Pascal Pétronelli§, Julien Engel, Niklas Tysklind§, Sana Miloudi#, Fernanda A. Gaiotto¤, Jérôme Chave«, Jean-François Molino», Daniel Sabatier», João Loureiro˄, Katharina B. Budde#
‡ INRAE & University of Bordeaux, Cestas, France§ INRAE, Cirad, Ecofog, GF-97310 Kourou, French Guiana| INRAE, URFM, FR-84914 Avignon, France¶ International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL-33199, United States of America# Univ. Bordeaux, INRAE, Biogeco, FR-33610 Cestas, France¤ Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Ilhéus, BR-45662-901, Bahia, Brazil« Université Paul Sabatier Toulouse, CNRS, EBD, FR-31062, Toulouse, France» Université de Montpellier, IRD, Cirad, CNRS, INRAE, AMAP, FR-34398 Montpellier, France˄ University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, PT-3000-456 Coimbra, Portugal
Open Access
Abstract

Background and aims – The evolutionary history of Amazonia’s hyperabundant tropical tree species, also known as “hyperdominant” species, remains poorly investigated. We assessed whether the hyperdominant Eschweilera coriacea (DC.) S.A.Mori (Lecythidaceae) represents a single genetically cohesive species, and how its genetic constitution relates to other species from the same clade with which it occurs sympatrically in French Guiana.

Methods – We sampled 152 individuals in nine forest sites in French Guiana, representing 11 species of the genus Eschweilera all belonging to the Parvifolia clade, with emphasis on E. coriacea. Samples were genotyped at four simple sequence repeat (SSR) markers. We delimited gene pools, i.e., genetically coherent putative taxa, using STRUCTURE software and principal component analysis. We compared the genetic assignment of individuals with their morphological species determination and estimated genetic diversity and differentiation for gene pools and species. We also estimated genome size using flow cytometry.

Key results – SSR profiles commonly displayed up to four alleles per genotype, suggesting that the investigated Eschweilera species bear a paleopolyploid signature. Flow cytometry suggested that the studied species are diploid with haploid genome sizes of 871–1046 Mbp. We detected five gene pools and observed a good correspondence between morphological and genetic delimitation for Eschweilera sagotiana Miers and the undescribed morphospecies E. sp. 3 (which resembles E. grandiflora (Aubl.) Sandwith), and to a lesser extent for E. decolorans Sandwith and E. micrantha (O.Berg) Miers. Eschweilera coriacea was the most genetically diverse species and included individuals assigned to each gene pool.

Conclusions – We found no conclusive evidence for cryptic species within E. coriacea in French Guiana. SSRs detected fewer gene pools than expected based on morphology in the Parvifolia clade but discriminated evolutionary relationships better than available plastid markers. A positive trend between demographic abundance of species and allelic richness illustrates that hyperdominants may have a high evolutionary potential. This hypothesis can be tested using more powerful genomic data in combination with tree phenotypic trait variation and characterization of niche breadth, to enhance our understanding of the causes of hyperdominance in Amazonian trees.

Keywords
Eschweilera, microsatellites, species delimitation, hyperdominant tropical trees, species complex, cryptic species

References

  • Allié E., Pélissier R., Engel J., Petronelli P., Freycon V., Deblauwe V., Soucémarianadin L., Weigel J., Baraloto C. (2015) Pervasive local-scale tree-soil habitat association in a tropical forest community. PLoS One 10(11): e0141488. https://doi.org/10.1371/journal.pone.0141488
  • Arellano G., Cala V., Macía M.J. (2014) Niche breadth of oligarchic species in Amazonian and Andean rain forests. Journal of Vegetation Science 25(6): 1355–1366. https://doi.org/10.1111/jvs.12180
  • Arellano G., Jørgensen P.M., Fuentes A.F., Loza M.I., Torrez V., Macía M.J. (2016) Oligarchic patterns in tropical forests: role of the spatial extent, environmental heterogeneity and diversity. Journal of Biogeography 43(3): 616–626. https://doi.org/10.1111/jbi.12653
  • Baraloto C., Hardy O.J., Paine C.E.T., Dexter K.G., Cruaud C., Dunning L.T., Gonzalez M.-A., Molino J.-F, Sabatier D., Savolainen V., Chave J. (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology 100(3): 690–701. https://doi.org/10.1111/j.1365-2745.2012.01966.x
  • Barthlott W., Hostert A., Kier G., Küper W., Kreft H., Mutke J., Rafiqpoor M.D., Sommer J.H. (2007) Geographic patterns of vascular plant diversity at continental to global scales (Geographische Muster der Gefäßpflanzenvielfalt im kontinentalen und globalen Maßstab). Erdkunde 61(4): 305–315. https://www.jstor.org/stable/25648042
  • Buckley D.P., O’Malley D.M., Apsit V., Prance G.T., Bawa K.S. (1988) Genetics of Brazil “Nut” (Berhollelia excelsa Humb. & Bonpl.: Lecythidaceae): I. Genetic variation in natural populations. Theoretical and Applied Genetics 76(6): 923–928. https://doi.org/10.1007/BF00273682
  • Caron H., Molino J.-F., Sabatier D., Léger P., Chaumeil P., Scotti-Saintagne C., Frigério J.-M., Scotti I., Franc A., Petit R.J. (2019) Chloroplast DNA variation in a hyperdiverse tropical tree community. Ecology and Evolution 9(8): 4897–4905. https://doi.org/10.1002/ece3.5096
  • Carstens B.C., Pelletier T.A., Reid N.M., Satler J.D. (2013) How to fail at species delimitation. Molecular Ecology 22(17): 4369–4383. https://doi.org/10.1111/mec.12413
  • Cavers S., Telford A., Arenal Cruz F., Pérez Castañeda A.J., Valencia R., Navarro C., Buonamici A., Lowe A., Vendramin G.G. (2013) Cryptic species and phylogeographical structure in the tree Cedrela odorata L. throughout the Neotropics. Journal of Biogeography 40(4): 732–746. https://doi.org/10.1111/jbi.12086
  • Charlesworth B. (2009) Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10: 195–210. https://doi.org/10.1038/nrg2526
  • Daïnou K., Blanc-Jolivet C., Degen B., Kimani P., Ndiade-Bourobou D., Donkpegan A.S.L., Tosso F., Kaymak E., Bourland N., Doucet J.-L., Hardy O.J. (2016) Revealing hidden species diversity in closely related species using nuclear SNPs, SSRs and DNA sequences – a case study in the tree genus Milicia. BMC Evolutionary Biology 16: 259. https://doi.org/10.1186/s12862-016-0831-9
  • de Barros L.R.F, de Oliveira Wadt L.H., Mondin M., Pappas Junior. G., Rocha R.T., de Castro Rodrigues Pappas M., Kimura R.K., Martins K. (2019) Draft genome assembly of the tropical tree Bertholletia excelsa using long-read sequence data. In: XXV IUFRO World Congress, 29 sept - 5 October 2019, Curitiba, PR, Brazil, Abstracts: 318. Pesquisa Florestal Brasileira, Colombo, vol. 39, e201902043, Special issue.
  • Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M.A., Nardi L., Obermayer R. (1998) Plant genome size estimation by flow cytometry: interlaboratory comparison. Annals of Botany 82(Suppl. A): 17–26. https://doi.org/10.1093/oxfordjournals.aob.a010312
  • Doyle J., Doyle J.L. (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochemical Bulletin 19(1): 11–15.
  • Duminil J., Heuertz M., Doucet J.-L., Bourland N., Cruaud C., Gavory F., Doumenge C., Navascués M., Hardy O.J. (2010) CpDNA-based species identification and phylogeography: application to African tropical tree species. Molecular Ecology 19(24): 5469–5483. https://doi.org/10.1111/j.1365-294X.2010.04917.x
  • Duminil J., Kenfack D., Viscosi V., Grumiau L., Hardy O.J. (2012) Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae) Molecular Phylogenetics and Evolution 62(1): 275–285. https://doi.org/10.1016/j.ympev.2011.09.020
  • Earl D.A., vonHoldt B.M. (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361. https://doi.org/10.1007/s12686-011-9548-7
  • Eiserhardt W.L., Couvreur T.L.P., Baker W.J. (2017) Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. New Phytologist 214(4): 1408–1422. https://doi.org/10.1111/nph.14516
  • Funk V., Hollowell T., Berry P., Kelloff C., Alexander S.N. (2007) Checklist of the Plants of the Guiana Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French Guiana) Contributions from the United States National Herbarium, vol. 55. Washington, DC, National Museum of Natural History.
  • Galbraith D.W., Harkins K.R., Maddox J.M., Ayres N.M., Sharma D.P., Firoozabady E. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601): 1049–1051. https://doi.org/10.1126/science.220.4601.1049
  • Gentry A.H. (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals of the Missouri Botanical Garden 69(3): 557–593. https://doi.org/10.2307/2399084
  • Goodwin Z.A., Harris D.J., Filer D., Wood J.R.I., Scotland R.W. (2015) Widespread mistaken identity in tropical plant collections. Current Biology 25(22): R1066–R1067. https://doi.org/10.1016/j.cub.2015.10.002
  • Grivet D., Climent J., Zabal-Aguirre M., Neale D.B., Vendramin G.G., González-Martínez S.C. (2013) Adaptive evolution of Mediterranean pines. Molecular Phylogenetics and Evolution 68(3): 555–566. https://doi.org/10.1016/j.ympev.2013.03.032
  • Guichoux E., Garnier-Géré P., Lagache L., Lang T., Boury C., Petit R.J. (2013) Outlier loci highlight the direction of introgression in oaks. Molecular Ecology 22(2): 450–462. https://doi.org/10.1111/mec.12125
  • Hardy O.J. (2016) Population genetics of autopolyploids under a mixed mating model and the estimation of selfing rate. Molecular Ecology Resources 16(1): 103–117. https://doi.org/10.1111/1755-0998.12431
  • Hardy O.J., Dainou K., Donkpegan A., Duminil J., Ewedje E.-E., Ikabanga D.U. (2017) Are we underestimating the number of plant species in the tropics? New insights from population genetics approaches applied on African forest trees. In: Scientific abstracts from the 7th International Barcode of Life Conference. Genome 60: 942.
  • Hartl D. (2000) A primer of population genetics. 3rd Ed. Sunderland, Sinauer Associates, Inc.
  • Hoban S., Arntzen J.A., Bruford M.W., Godoy J.A., Rus Hoelzel A., Segelbacher G., Vilà C., Bertorelle G. (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evolutionary Applications 7(9): 984–998. https://doi.org/10.1111/eva.12197
  • Huang Y.-Y., Mori S.A., Kelly L.M. (2015) Toward a phylogenetic-based generic classification of Neotropical Lecythidaceae - I. Status of Bertholletia, Corythophora, Eschweilera and Lecythis. Phytotaxa 203: 85–121. https://doi.org/10.11646/phytotaxa.203.2.1
  • Joshi N.A., Fass J.N. (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. Available at https://github.com/najoshi/sickle [accessed 27 Jan. 2020].
  • Kalinowski S.T. (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106: 625–632. https://doi.org/10.1038/hdy.2010.95
  • Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15(5): 1179–1191. https://doi.org/10.1111/1755-0998.12387
  • Kowal R.R., Mori S.A., Kallunki J.A. (1977) Chromosome numbers of Panamanian Lecythidaceae and their use in subfamilial classification. Brittonia 29: 399–. https://doi.org/10.2307/2806482
  • Levis C., Costa F.R.C., Bongers F., Peña-Claros M., Clement C.R., Junqueira A.B., Neves E.G., et al. (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355(6328): 925–931. https://doi.org/10.1126/science.aal0157
  • Loiselle B.A., Sork V.L., Nason J., Graham C. (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82(11): 1420. https://doi.org/10.2307/2445869
  • Loureiro J., Rodriguez E., Doležel J., Santos C. (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany 100(4): 875–888. https://doi.org/10.1093/aob/mcm152
  • Luo A., Ling C., Ho S.Y.W., Zhu C.-D. (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67(5): 830–846. https://doi.org/10.1093/sysbio/syy011
  • McMichael C.H., Feeley K.J., Dick C.W., Piperno D.R., Bush M.B. (2017) Comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition.” Science 358(6361): eaan8347. https://doi.org/10.1126/science.aan8347
  • Medrano M., López-Perea E., Herrera C.M. (2015) Population genetics methods applied to a species delimitation problem: endemic trumpet daffodils (Narcissus section Pseudonarcissi) from the Southern Iberian Peninsula. International Journal of Plant Sciences 175(5): 501–517. https://doi.org/10.1086/675977
  • Meglécz E., Costedoat C., Dubut V., Gilles A., Malausa T., Pech N., Martin J.-F. (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26 (3): 403–404. https://doi.org/10.1093/bioinformatics/btp670
  • Mirarab S., Reaz R., Bayzid M.S., Zimmermann T., Swenson M.S., Warnow T. (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30(17): i541–i548. https://doi.org/10.1093/bioinformatics/btu462
  • Mori S.A. (1987) The Lecythidaceae of a lowland Neotropical forest: La Fumée Mountain, French Guiana. Memoirs of the New York Botanical Garden, vol. 44. New York, New York Botanical Garden Press.
  • Mori S.A., Lepsch-Cunha N. (1995) The Lecythidaceae of a Central Amazonian moist forest. Memoirs of the New York Botanical Garden, vol. 75. New York, New York Botanical Garden Press.
  • Mori S.A., Prance G.T. (1990) Lecythidaceae, Part 2. The zygomorphic-flowered New World genera (Couroupita, Corythophora, Bertholletia, Couratari, Eschweilera, & Lecythis), with a study of secondary xylem of Neotropical Lecythidaceae by Carl H. de Zeeuw. Flora Neotropica, Monograph 21 (II). New York, New York Botanical Garden Press. https://www.jstor.org/stable/4393724
  • Mori S.A., Becker P., Kincaid D. (2001) Lecythidaceae of a Central Amazonian lowland forest. In Bierregaard R.O. Jr, Gascon C., Lovejoy T., Mesquita R. (eds.) Lessons from Amazonia: The ecology and conservation of a fragmented forest: 54–67. New Haven and London, Yale University Press.
  • Mori S.A., Tsou C.-H., Wu C.-C., Cronholm B., Anderberg A.A. (2007) Evolution of Lecythidaceae with an emphasis on the circumscription of Neotropical genera: information from combined ndhF and trnL-F sequence data. Annals of Botany 94(3): 289–301. https://doi.org/10.3732/ajb.94.3.289
  • Mori S.A., Kiernan E.A., Smith N.P., Kelley L.M., Huang Y-Y., Prance G.T., Thiers B. (2017) Observations on the phytogeography of the Lecythidaceae (Brazil nut family). Phytoneuron 30: 1–85.
  • Nordborg M. (2001) Coalescent theory. In Balding D.J., Bishop M.J., Cannings C. (eds.) Handbook of Statistical Genetics: 179-212. Chichester, John Wiley & Sons.
  • Orozco-terWengel P., Corander J., Schlötterer C. (2011) Genealogical lineage sorting leads to significant, but incorrect Bayesian multilocus inference of population structure. Molecular Ecology 20(6): 1108–1121. https://doi.org/10.1111/j.1365-294X.2010.04990.x
  • Pennington R.T., Lavin M. (2016) The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytologist 210(1): 25–37. https://doi.org/10.1111/nph.13724
  • Peters C.M., Balick M.J., Kahn F., Anderson A.B. (1989) Oligarchic forests of economic plants in Amazonia: Utilization and conservation of an important tropical resource. Conservation Biology 3(4): 341–349. https://www.jstor.org/stable/2386215
  • Pitman N.C.A., Terborgh J.W., Silman M.R., Percy Núñez V., Neill D.A., Cerón C.E., Palacios W.A., Aulestia M. (2001) Dominance and distribution of tree species in Upper Amazonian terra firme forests. Ecology 82(8): 2101–2117. https://doi.org/10.1890/0012-9658(2001)082
  • Prance G.T., Mori S.A. (1979) Lecythidaceae–Part 1. The actinomorphic-flowered New World Lecythidaceae (Asteranthos, Gustavia, Grias, Allantoma, & Cariniana). Flora Neotropica, Monograph 21(I). New York, New York Botanical Garden Press. http://www.jstor.org/stable/4393721
  • Pritchard J.K., Stephens M., Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics 155(2): 945–959.
  • R Development Core Team (2008) R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.r-project.org/ [accessed 27 Jan. 2020].
  • Rosenberg N.A., Nordborg M. (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Reviews Genetics 3: 380–390. https://doi.org/10.1038/nrg795
  • Rosenberg N.A., Mahajan S., Ramachandran S., Zhao C., Pritchard J.K., Feldman M.W. (2005) Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genetics 1: e70. https://doi.org/10.1371/journal.pgen.0010070
  • Rousset F. (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4): 1219–1228.
  • Santos A.S., Borges D.B., Vivas C.V., Berg C.V.D., Rodrigues P.S., Tarazi R., Gaiotto F.A. (2019) Gene pool sharing and genetic bottleneck effects in subpopulations of Eschweilera ovata (Cambess.) Mart. ex Miers (Lecythidaceae) in the Atlantic Forest of southern Bahia, Brazil. Genetics and Molecular Biology 42(3): 655–665. https://doi.org/10.1590/1678-4685-gmb-2018-0140
  • Shi T., Huang H., Barker M.S. (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Annals of Botany 106(3): 497–504. https://doi.org/10.1093/aob/mcq129
  • ter Steege H., Pitman N.C.A., Phillips O.L., Chave J., Sabatier D., Duque A., et al. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443: 444–447. https://doi.org/10.1038/nature05134
  • ter Steege H., Pitman N.C.A., Sabatier D., Baraloto C., Salomão R.P., Guevara J.E., et al. (2013) Hyperdominance in the Amazonian tree flora. Science 342(6156): 1243092. https://doi.org/10.1126/science.1243092
  • Torroba-Balmori P., Budde K.B., Heer K., González-Martínez S.C., Olsson S., Scotti-Saintagne C., Casalis M., Sonké B., Dick C.W., Heuertz M. (2017) Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PloS One 12: e0182515. https://doi.org/10.1371/journal.pone.0182515
  • Turchetto-Zolet A.C., Pinheiro F., Salgueiro F., Palma-Silva C. (2013) Phylogeographical patterns shed light on evolutionary process in South America. Molecular Ecology 22(5): 1193–1213. https://doi.org/10.1111/mec.12164
  • Willyard A., Cronn R., Liston A. (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution 52(2): 498–511. https://doi.org/10.1016/j.ympev.2009.02.011