Plant Ecology and Evolution 153(1): 45-58, doi: 10.5091/plecevo.2020.1688
Lignicolous fungal assemblages and relationships with environment in broadleaved and mixed forests from the North-East Region of Romania
expand article infoOvidiu Copoț, Constantin Mardari, Ciprian C. Bîrsan, Cătălin Tănase§
‡ A. Fătu Botanical Garden, Alexandru Ioan Cuza University of Iași, 7-9 Dumbrava Roșie, 700487 Iași, Romania§ Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I 20A, 700505 Iaşi, Romania
Open Access
Abstract

Background and aims – Lignicolous fungal assemblages perform numerous functions in forest ecosystems, one of the most important being their capacity to decay wood. As a consequence of their belonging to different ecological niches, the forest ecosystem influences the fungal assemblages in terms of species richness and composition.

Methods – In this study we analyzed the main lignicolous macrofungal assemblages in some deciduous and mixed deciduous-coniferous forests in the North-East Region of Romania. We searched to find fungal indicator species for a certain forest type and which are the main drivers and their effects on the composition of the lignicolous macrofungal assemblages. Fungal assemblages were identified using a hierarchical agglomerative clustering procedure, while diagnostic species for each cluster were identified based on the indicator value index. Relationships between fungal composition of plots and environmental variables were performed using detrended and canonical correspondence analyses.

Key results – A total of 377 fungal taxa in approximately 4600 records (in 59 plots) were identified. Six distinct clusters of lignicolous fungal assemblages were defined and separated three groups: 1) species-rich lignicolous fungal assemblages in beech forests (1 cluster), 2) well defined fungal assemblages in the mixed broadleaved-coniferous forests (2 clusters), and 3) fungal assemblages typical to oak forests (3 clusters). Ordination methods highlighted the forest type as the most important factor influencing the fungal composition of plots. Forestry Aridity Index, tree diversity and large trees basal area were also important factors for fungal assemblages but with a lower contribution.

Conclusion – In the studied region, fungal assemblages changed from oak to beech and to mixed, broadleaved-coniferous forests mainly as a consequence of different tree composition. Climate also shaped fungal composition but to a lesser extent.

Keywords
forest type, wood inhabiting fungi, fungal composition, abiotic and biotic drivers

References

  • Abrego N., Halme P., Purhonen J., Ovaskainen O. (2016) Fruit body based inventories in wood-inhabiting fungi: Should we replicate in space or time? Fungal Ecology 20: 225−232. https://doi.org/10.1016/j.funeco.2016.01.007
  • Andronache I., Fensholt R., Ahammer H., Ciobotaru A.-M., Pintilii R.-D., Peptenatu D., Drăghici C.-C., Diaconu D.C., Raadulović M., Pulighe G., Azihou A.F., Toyi M.S., Sinsin B. (2017) Assessment of textural differentiations in forest resources in Romania using fractal analysis. Forests 8(3): 54−74. https://doi.org/10.3390/f8030054
  • ANM – Administrația Națională de Meteorologie (2008) Clima României. București, Editura Academiei Române.
  • Bernicchia A., Gorjón S.P. (2010) Fungi Europaei - Corticiaceae s.l. Alassio, Edizzioni Candusso.
  • Bîrsan C., Tănase C., Mardari C., Cojocariu A. (2014) Diversity and ecological determinants of dead wood fungi in tree natural reserves of broad leaved forests from Suceava county. Journal of Plant Development 21: 153−160.
  • Breitenbach J., Kränzlin F. (1986) Champignons de Suisse. Tome 2. Champignons sans lames. Lucerne, Mykologia.
  • Brunet J., Fritz Ö., Richnau G. (2010) Biodiversity in European beech forests – a review with recommendations for suitable forest management. Ecological Bulletins 53: 77−94.
  • Cavender-Bares J., Izzo A., Robinson R., Lovelock C.E. (2009) Changes in ectomycorrhizal community structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza. 19: 133–142. https://doi.org/10.1007/s00572-008-0220-3
  • Chifu T., Mânzu C., Zamfirescu O. (2006) Flora și vegetația Moldovei (România). II Vegetația. Iași, Editura Universității Alexandru Ioan Cuza.
  • Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Böhner J. (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8(1): 1991−2007. https://doi.org/10.5194/gmd-8-1991-2015
  • Çolak A.H., Tokcan M., Kirca S. (2010) Dead Wood (Unseen Life on Dead). Istanbul, The Western Black Sea Forestry Research Institute.
  • Copoț O., Balaeș T., Bîrsan C., Petre C.V., Cojocariu A., Tănase C. (2018) Climatic predictors influences VFWD fungal diversity through dominant tree’ ecology in beech forests in the North-Eastern Romania. Journal of Plant Development 25: 119−134. https://doi.org/10.33628/jpd.2018.25.1.119
  • Courtecuisse R., Duhem B. (2013) Champignons de France et d’Europe. Paris, Delachaux et Niestlé.
  • Crabtree C.D., Keller H.W., Ely J.S. (2010) Macrofungi associated with vegetation and soils at Ha Ha Tonka State Park, Missouri. Mycologia 102(6): 1229−1239. https://doi.org/10.3852/08-138
  • De Cáceres M., Legendre P. (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12): 3566−3574. https://doi.org/10.1890/08-1823.1
  • Diyarova D.K. (2016) The role of wood-decaying fungi in the carbon cycle of forest ecosystems and the main ecological factors. European Scientific Journal, special edition: 162−166.
  • Dufrêne M., Legendre P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67(3): 345−366. https://doi.org/10.2307/2963459
  • Dvořák D., Vašutová J., Hofmeister J., Beran M., Hošek J., Běťák J., Burel J., Deckerová H. (2017) Macrofungal diversity patterns in central European forests affirm the key importance of old-growth forests. Fungal Ecology 27: 145−154. https://doi.org/10.1016/j.funeco.2016.12.003
  • Ellis J.B., Everhart D.M. (1966) The North American Pyrenomycetes. A contribution to mycologic botany. New York, Johnson Reprint Corporation.
  • Eyssartier G., Roux P. (2013) Le guide des champignons. France et Europe. Paris, Belin.
  • Fick S.E., Hijmans R.J. (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302−4315. https://doi.org/10.1002/joc.5086
  • Frankland J.C., Hedger J.N., Swift M.J. (1982) Decomposer basidiomycetes: their biology and ecology. Cambridge, Cambridge University Press.
  • Führer E., Horváth L., Jagodics A., Machon A., Szabados I. (2011) Application of new aridity index in Hungarian forestry practice. Quarterly Journal of the Hungarian Meteorological Service 115(3): 205−216.
  • Gerhardt E. (1999) Guide Vigot des champignons. Paris, Vigot, Paris.
  • Gilbertson R.L., Ryvarden L. (1986) Abortiporus – Lindtneria. In: North American Polypores, vol. 1. Oslo, Fungiflora.
  • Gilbertson R.L., Ryvarden L. (1987) Megaspororia – Wrightoporia. In: North American Polypores, vol. 2. Oslo, Fungiflora.
  • Heilmann-Clausen J., Christensen M. (2003) Fungal diversity on decaying beech logs - implications for sustainable forestry. Biodiversity and Conservation 12(5): 953−973. https://doi.org/10.1023/A:1022825809503
  • Heilmann-Clausen J., Aude E., Christensen M. (2005) Cryptogam communities on decaying deciduous wood – does tree species diversity matter? Biodiversity and Conservation 14(9): 2061−2078. https://doi.org/10.1007/s10531-004-4284-x
  • Heilmann-Clausen J., Aude E., van Dort K., Christensen M., Piltaver A., Veerkamp M., Walleyn R., Siller I., Standovár T., Òdor P. (2014) Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe – reflecting substrate quality or shaped by climate and forest conditions? Journal of Biogeography 41(12): 2269−2282. https://doi.org/10.1111/jbi.12388
  • Hennon P.E., Mulvey R.L. (2014) Managing heart rot in live trees for wildlife habitat in young-growth forests of Coastal Alaska. General Technical Report PNW-GTR-890, Portland, Department of Agriculture, Forest Service, Pacific Northwest Research Station, US. Available at https://www.fs.fed.us/pnw/pubs/pnw_gtr890.pdf [accessed 23 Jan. 2020].
  • Holec J., Běťák J., Dvořák D., Kříž M., Kuchaříková M., Krzyściak-Kosińska R., Kučera T. (2019) Macrofungi on fallen oak trunks in the Białowieża Virgin Forest – ecological role of trunk parameters and surrounding vegetation. Czech Mycology 71(1): 65−89. https://doi.org/10.33585/cmy.71105
  • Jančovičová S., Glejdura S. (1999) Ascomycetes from Danube islands in Bratislava (Slovakia). Tsaiszia – Journal of Botany 9: 1−10.
  • Jülich W. (1989) Aphyllophorales, Heterobasidiomycetes, Gastromycetes. In: Jülich W. (ed.) Guida all determinazione dei funghi, vol 2. Trento, Saturnia.
  • Kubartová A., Ranger J., Berthelin J., Beguiristain T. (2009) Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology 58(1): 98−107. https://doi.org/10.1007/s00248-008-9458-8
  • Küffer N., Gillet F., Senn-Irlet B., Aragno M., Job D. (2008) Ecological determinants of fungal diversity on dead wood in European forests. Fungal Diversity 30: 83−95.
  • Kutszegi G., Siller I., Dima B., Takács K., Merényi Z., Varga T., Turcsányi G., Bidló A., Ódor P. (2015) Drivers of macrofungal species composition in temperate forests, West Hungary: functional groups compared. Fungal Ecology 17: 69−83. https://doi.org/10.1016/j.funeco.2015.05.009
  • Landi M., Salerni E., Ambrosio E., D’Aguanno M., Nucci A., Saveri C., Perini C., Angiolini C. (2015) Concordance between vascular plant and macrofungal community composition in broadleaf deciduous forests in central Italy. iForest 8(3): 279−286. https://doi.org/10.3832/ifor1199-008
  • Lifewatch (2019) LifeWatch-WB ecotope database. Available at http://lifewatch.be/en/lifewatch-wb-ecotope-database [accessed 20 Feb. 2019].
  • Lombardi F., Cherubini P., Tognetti R., Cocozza C., Lasserre B., Marchetti M. (2013) Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Annals of Forest Science 70: 101−111. https://doi.org/10.1007/s13595-012-0230-3
  • Luchi N., Capretti P., Feducci M., Vannini A., Ceccarelli B., Vettraino A.M. (2015) Latent infection of Biscogniauxia nummularia in Fagus sylvatica: a possible bioindicator of beech health conditions. iForest 9(1): 49−54. https://doi.org/10.3832/ifor1436-008
  • Maechler M., Rousseeuw P., Struyf A., Hubert M., Hornik K. (2018) Cluster: Cluster Analysis Basics and Extensions. Available at https://svn.r-project.org/R-packages/trunk/cluster [accessed 23 Jan. 202].
  • Mäkipää R., Rajala T., Schigel D., Rinne K.T., Pennanen T., Abrego N., Ovaskainen O. (2017) Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. The ISME Journal 11: 1964−1974. https://doi.org/10.1038/ismej.2017.57
  • Mihál, I., Blanár, D. (2014) Fungi and slime molds of alder and willow alluvial forests of the upper part of the Muránka river (central Slovakia). Folia Oecologica 41(2):153−172.
  • Müller J., Engel H., Blaschke M. (2007) Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. European Journal of Forest Research 126: 513–527. https://doi.org/10.1007/s10342-007-0173-7
  • Neuwirth E. (2014) RColorBrewer: ColorBrewer Palettes. Available at https://CRAN.R-project.org/package=RColorBrewer [accessed 23 Jan. 2020].
  • Nordén B., Götmark F., Tönnberg M., Ryberg M. (2004) Dead wood in semi-natural temperate broadleaved woodland: contribution of coarse and fine dead wood, attached dead wood and stumps. Forest Ecology and Management 194(1–3): 235–248. https://doi.org/10.1016/j.foreco.2004.02.043
  • Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H. (2018) vegan: Community Ecology Package. Available at https://cran.r-project.org/package=vegan [accessed 23 Jan. 2020].
  • Packham J.M., May T.W., Brown M.J., Wardlaw T.J., Mills A.K. (2002) Macrofungal diversity and community ecology in mature and regrowth wet eucalypt forest in Tasmania: a multivariate study. Austral ecology 27(2): 149−161. https://doi.org/10.1046/j.1442-9993.2002.01167.x
  • Petre C.V., Balaeș T., Tănase C. (2014) Lignicolous basidiomycetes as valuable biotechnological agents. Memoirs of the Scientific Sections of the Romanian Academy, Biology 37: 37−62.
  • Purhonen J., Huhtinen S., Kotiranta H., Kotiaho J.S., Halme P. (2017) Detailed information on fruiting phenology provides new insights on wood-inhabiting fungal detection. Fungal Ecology 27: 175−177. https://doi.org/10.1016/j.funeco.2016.06.007
  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.r-project.org/ [accessed 23 Jan. 2020].
  • Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. (2017) Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products 80(3): 756−770. https://doi.org/10.1021/acs.jnatprod.6b01085
  • Rand W.M. (1971) Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66: 846–850. https://doi.org/10.2307/2284239
  • Rudolf K., Morschhauser T., Pál-Fám F. (2012) Macrofungal diversity in disturbed vegetation types in North-East Hungary. Central European Journal of Biology 7(4): 634−647. https://doi.org/10.2478/s11535-012-0050-3
  • Ryvarden L. (1976) Albatrellus – Incrustoporia. In: Ryvarden L. (ed.) The Polyporaceae of North Europe, vol. 1. Oslo, Fungiflora.
  • Ryvarden L. (1991) Genera of Polypores. Nomenclature and taxonomy. Synopsis Fungorum, vol. 5. Oslo, Fungiflora.
  • Ryvarden L., Gilbertson R.L. (1994) European Polypores. Part 2. Meripilus – Tyromyces. In: Ryvarden L., Gilbertson R.L. (eds) Synopsis Fungorum, vol 7. Oslo, Fungiflora.
  • Sefidi K., Darabad F.E., Azaryan M. (2016) Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. iForest – Biogeosciences and Forestry 9(4): 658−665. https://doi.org/10.3832/ifor1080-008
  • Senn-Irlet B. (1995) The genus Crepidotus (Fr.) Staude in Europe. Persoonia 16(1): 1−80.
  • Tavankar F., Picchio R., Lo Monaco A., Bonyad A.E. (2014) Forest management and snag characteristics in Northern Iran lowland forests. Journal of Forest Science 60(10): 431−441. https://doi.org/10.17221/77/2014-JFS
  • Tănase C., Pop A. (2005) Lista Roșie a Macromicetelor din România. Bioplatform – Romanian National Platform for Biodiversity. Bucureşti, Editura Academiei Române.
  • Tănase C., Bîrsan C., Chinan V., Cojocariu A. (2009) Macromicete din Romania. Iași, Editura Universității Alexandru Ioan Cuza.
  • ter Braak C.J.F., Šmilauer P. (2002) CANOCO reference manual and user’s guide to CANOCO for Windows: software for Canonical Community Ordination. Version 4.5. Ithaka, NY, Microcomputer Power.
  • Vasilyeva L.N., Rogers J.D., Miller A.N. (2007) Pyrenomycetes of the Great Smoky Mountains National Park. V. Annulohypoxylon and Hypoxylon (Xylariaceae). Fungal Diversity 27: 231−245.
  • Wang B., Zhang G., Duan J. (2015) Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. International Soil and Water Conservation Research 3(4): 291–304. https://doi.org/10.1016/j.iswcr.2015.10.002
  • Zabel R.A., Morrell J.J. (1992) Wood microbiology: decay and its prevention. San Diego, Academic Press.
  • Županić M., Matošević D., Pernek M., Diminić D. (2009) Lignicolous fungi on Pedunculate oak in lowland forests of Central Croatia. Periodicum Biologorum 111(4): 397−403.