Plant Ecology and Evolution 153(1): 12-21, doi: 10.5091/plecevo.2020.1573
Diversity of epiphyte ferns along an elevational gradient in El Triunfo Biosphere Reserve, southern Mexico
expand article infoDerio A. Jiménez-López, Rubén Martínez-Camilo, Nayely Martínez-Meléndez§, Michael Kessler|
‡ Centro del Cambio Global y la Sustentabilidad A.C. (CCGS), Centenario del Instituto Juárez s/n, Colonia Reforma 86080, Villahermosa, Tabasco, Mexico§ Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, 29290 San Cristóbal de las Casas, Chiapas, Mexico| Department of Systematic and Evolutionary Botany, University of Zürich, 8008 Zurich, Switzerland
Open Access
Abstract

Background and aims – In the tropics, some studies have found that the richness of epiphytic ferns present a peak at mountain mid-elevations. However, it is not well understood how transitions from tropical to subtropical conditions affect this peak, and even less is known about beta diversity of epiphytic ferns. Thus, the objective is to understand the effect of climatic gradients on the variation of local richness of ferns and beta diversity patterns along an elevational gradient in a mountain system in southern Mexico.

Methods – We sampled 32 trees, each in four elevational bands (100–2200 m). Alpha diversity patterns were analysed using linear regression models. We used the Morisita index to quantify species turnover between bands. An additive partitioning approach was used to analyse the degree to which individual trees, plots, and bands contributed to total species richness. We evaluated the influence of climatic variables on species composition via linear regression models.

Key results – A total of 30 species in five families were recorded. Each family contributed in different magnitude to the elevational richness pattern, with Polypodiaceae dominating due to its richness and presence along the entire transect. Alpha diversity at the three scales (αtree, αplot, αband) increased with elevation and rainfall, and with decreasing temperature. Species turnover was high along the gradient, but was scale-dependent, with βtransect (65–75%) and βband (14%) with the greatest contributing to total diversity. Although the contribution of the individual trees was lower, it increased with elevation.

Conclusions – We emphasize the importance of including different scale levels in analyses of diversity along elevational gradients. In the region, cloud forest on the mountain peaks harbours the highest diversity of epiphytic fern communities. Due to a limited extent of this mountain range, the epiphyte ferns are susceptible to the effects of climate change.

Keywords
Alpha and Beta diversity, elevational pattern, fern richness, partitioning diversity, Sierra Madre de Chiapas

References

  • Acebey A.R., Krömer T., Kessler M. (2017) Species richness and vertical distribution of ferns and lycophytes along an elevational gradient in Mexico. Flora 235: 83–91. https://doi.org/10.1016/j.flora.2017.08.003
  • Bach K., Kessler M., Gradstein S.R. (2007) A simulation approach to determine statistical significance of species turnover peaks in a species-rich tropical cloud forest. Diversity and Distributions 13(6): 863–870. https://doi.org/10.1111/j.1472-4642.2007.00357.x
  • Benzing D.H. (1990) Vascular epiphytes. General biology and related biota. New York, Cambridge University Press.
  • Breedlove D.E. (1981) Flora of Chiapas, Part I: Introduction of the flora of Chiapas. San Francisco, The California Academy of Sciences.
  • Carvajal-Hernández C.I., Krömer T. (2015) Riqueza y distribución de helechos y licófitos en el gradiente altitudinal del Cofre de Perote, centro de Veracruz, México. Botanical Science 93(3): 601–614. https://doi.org/10.17129/botsci.165
  • Carvajal-Hernández C.I., Krömer T., López-Acosta J.C., Gómez-Díaz J.A., Kessler M. (2017) Conservation value of disturbed and secondary forests for ferns and lycophytes along an elevational gradient in Mexico. Applied Vegetation Science 20(4): 662–672. https://doi.org/10.1111/avsc.12318
  • Chao A., Ma K.H., Hsieh T.C., Chiu C.H. (2016) SpadeR (species-richness prediction and diversity estimation in R): an R package in CRAN. Version 0.1.1. Available at https://cran.r-project.org/web/packages/SpadeR/SpadeR.pdf [accessed 2 Nov. 2018].
  • Cortina-Villar S., Plascencia-Vargas H., Vaca R., Schroth G., Zepeda Y., Soto-Pinto L., Nahed-Toral J. (2012) Resolving the conflict between ecosystem protection and land use in protected areas of the Sierra Madre de Chiapas, Mexico. Environmental Management 49(3): 649–662. https://doi.org/10.1007/s00267-011-9799-9
  • Crist T.O., Veech J.A., Gering J.C., Summerville K.S. (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist 162(6): 734–743. https://doi.org/10.1086/378901
  • Dubuisson J.Y., Hennequin S., Rakotondrainibe F., Schneider H. (2003) Ecological diversity and adaptive tendencies in the tropical fern Trichomanes L. (Hymenophyllaceae) with special reference to climbing and epiphytic habits. Botanical Journal of the Linnean Society 142(1): 41–63. https://doi.org/10.1046/j.1095-8339.2003.00165.x
  • Escalante-Sandoval C., Amores-Rovelo L. (2014) Análisis de tendencia de las variables hidroclimáticas de la Costa de Chiapas. Revista Mexicana de Ciencias Agrícolas 5(1): 61–75.
  • Flores-Palacios A., García-Franco J.G. (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. Journal of Biogeography 33(2): 323–330. https://doi.org/10.1111/j.1365-2699.2005.01382.x
  • Galindo-Jaimes L. (2008) Diversificación y restauración de paisajes transformados en comunidades de la Reserva de la Biósfera El Triunfo, Chiapas, México. Technical report, San Cristóbal de Las Casas, Fondo de Conservación El Triunfo-BIOCORES.
  • GBIF (2019) Serpocaulon triseriale (Sw.) A.R.Sm. in Species 2000 & ITIS Catalogue of Life: 2019, Catalogue of Life. Available at https://www.gbif.org/species/153317676 [accessed 2 Aug. 2019].
  • Gentry A.H., Dodson C.H. (1987) Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74(2): 205–233. https://doi.org/10.2307/2399395
  • González-Espinosa M., Meave J.A., Ramírez-Marcial N., Toledo-Aceves T., Lorea-Hernández F.G., Ibarra-Manríquez G. (2012) Los bosques de niebla de México: conservación y restauración de su componente arbóreo. Ecosistemas 21(1-2): 36–54.
  • Graham A. (2010) Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. Monographs in Systematic Botany from the Missouri Botanical Garden 113: 1–617.
  • Hernández-Rojas R., Kessler M., Krömer T., Carvajal-Hernández C., Weigand A., Kluge J. (2018) Richness patterns of ferns along an elevational gradient in the Sierra de Juárez, Oaxaca, Mexico: a comparison with Central and South America. American Fern Journal 108(3): 76–94. https://doi.org/10.1640/0002-8444-108.3.76
  • Jones M.M., Tuomisto H., Borcard D., Legendre P., Clark D.B., Olivas P.C. (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data qualit. Oecologia 155(3): 593–604. https://doi.org/10.1007/s00442-007-0923-8
  • Karger D.N., Kluge J., Krömer T., Hemp A., Lehnert M., Kessler M. (2011) The effect of area on local and regional elevational patterns of species richness. Journal of Biogeography 38(6): 1177–1185. https://doi.org/10.1111/j.1365-2699.2010.02468.x
  • Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N., Linder H.P., Kessler M. (2017) Data descriptor: Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122. https://doi.org/10.1038/sdata.2017.122
  • Kessler M. (2000a) Elevation gradients in species richness endemism of selected plant groups in the central Bolivian Andes. Plant Ecology 149(2): 181–193. https://doi.org/10.1023/A:1026500710274
  • Kluge J., Kessler M., Dunn R.R. (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for Pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography 15(4): 358–371. https://doi.org/10.1111/j.1466-822X.2006.00223.x
  • Koleff P., Soberón J., Arita H.T., Dávila P., Flores-Villela O., Golubov J., Halfter G., Lira-Noriega A., Moreno C.E., Moreno E., Munguía M., Munguía M., Navarro-Sigüenza A.G., Téllez O., Ochoa-Ochoa L., Townsend-Peterson A., Rodríguez P. (2008) Patrones de diversidad espacial en grupos selectos de especies. In: CONABIO. Capital natural de México vol. 1: Conocimiento actual de la biodiversidad: 323–364. Mexico City, Comisión Nacional para el Uso y Conocimiento de la Biodiversidad.
  • Krömer T., Acebey A., Klune J., Kessler M. (2013) Effects of altitude and climate in determining elevational plants species richness patterns: a case study from Los Tuxtlas, Mexico. Flora 208(3): 197–210. https://doi.org/10.1016/j.flora.2013.03.003
  • Küper W., Kreft H., Nieder J., Köster N., Barthlott W. (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31(9): 1477–1487. https://doi.org/10.1111/j.1365-2699.2004.01093.x
  • Lawton R.O., Nair U.S., Pielke R.A., Welch R.M. (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294(5542): 584–587. https://doi.org/10.1126/science.1062459
  • Lehtonen S., Jones M.M., Zuquim G., Prado J., Tuomisto H. (2015) Phylogenetic relatedness within Neotropical fern communities increases with soil fertility. Global Ecology and Biogeography 24(6): 695–705. https://doi.org/10.1111/geb.12294
  • Lehtonen S., Silvestro D., Karger D.N., Scotese C., Tuomisto H., Kessler M., Peña C., Wahlberg N., Antonelli A. (2017) Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Scientific Reports 7(1): 4831. https://doi.org/10.1038/s41598-017-05263-7
  • Magurran A.E. (2004) Measuring biological diversity. Oxford, Blackwell Publishing.
  • Martínez-Camilo R., Pérez-Farrera M.A., Martínez-Meléndez N. (2012) Listado de plantas endémicas y en riesgo de la Reserva de la Biosfera El Triunfo, Chiapas, México. Botanical Sciences 90(3): 263–285. https://doi.org/10.17129/botsci.390
  • Martínez-Camilo R., González-Espinosa M., Ramírez-Marcial N., Cayuela L., Pérez-Farrera M.A. (2018) Tropical tree species diversity in a mountain system in southern Mexico: local and regional patterns and determinant factors. Biotropica 50(3): 499–509. https://doi.org/10.1111/btp.12535
  • Martínez-Meléndez N., Pérez-Farrera M.A., Martínez-Camilo R. (2009) The vascular epiphyte flora of El Triunfo Biosphere Reserve, Chiapas, México. Rhodora 111(948): 503–535. https://doi.org/10.3119/08-20.1
  • Mickel J.T., Smith A.R. (2004) The Pteridophytes of Mexico. Memoirs of The New York Botanical Garden 88: 1–1054.
  • Nair U.S., Lawton R.O., Welch R.M., Pielke R.A. (2003) Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. Journal of Geophysical Research: Atmospheres 108(7): 4206. https://doi.org/10.1029/2001JD001135
  • Pérez-Farrera M.A. (2004) Flora y vegetación de la reserva de la biósfera El Triunfo: diversidad, riqueza y endemismo. In: Pérez-Farrera M.A., Martínez-Meléndez N., Hernández-Yáñez A., Arreola-Muñoz A.V. (eds) La Reserva de la Biósfera El Triunfo, tras una década de conservación: 77–100. Tuxtla Gutierrez, Universidad de Ciencias y Artes de Chiapas.
  • Peters M.K., Hemp A., Appelhans T., Behler C., Classen A., Detsch F., Ensslin A., Ferger S.W., Frederiksen S.B., Gebert F., Haas M., Helbig-Bonitz M., Hemp C., Kindeketa W.J., Mwangomo E., Ngereza C., Otte I.,Röder J., Rutten G., Schellenberger-Costa D., Tardanico J., Zancolli G., Deckert J., Eardley C.D, Peters R.S., Rödel M., Schleuning M., Ssymank A., Kakengi V., Zhang J., Böhning-Gaese K., Brandl R., Kalko E.K.V., Kleyer M., Nauss T., Tschapka M., Fischer M., Steffan-Dewenter I. (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications 7: 13736. https://doi.org/10.1038/ncomms13736
  • Pounds J.A., Fogden M.P., Campbell J.H. (1999) Biological response to climate change on a tropical mountain. Nature 398(6728): 611–615. https://doi.org/10.1038/19297
  • PPGI – Pteridophyte Phylogeny Group I (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematic and Evolution 54(6): 563–603. https://doi.org/10.1111/jse.12229
  • Proctor M.C.F. (2012) Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche. Annals of Botany 109(5): 1019–1026. https://doi.org/10.1093/aob/mcs012
  • R Core Team (2018) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at https://www.r-project.org [accessed 2 Nov. 2018].
  • Rzedowski J. (1978) Vegetación de México. Mexico City, Limusa.
  • Salazar L., Homeier J., Kessler M., Abrahamczyk S., Lehnert M., Krömer T., Kluge J. (2013) Diversity patterns of ferns along elevational gradients in Andean tropical forest. Plant Ecology and Diversity 8(1): 13–24. https://doi.org/10.1080/17550874.2013.843036
  • Sanford W.W. (1968) Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology 56: 697–705. https://doi.org/10.2307/2258101
  • SEMARNAT (2018) Norma Oficial Mexicana NOM-059-SEMARNAT-2018, Protección ambiental – Especies nativas de México de flora y fauna silvestres – Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio – Lista de especies en riesgo. Diario Oficial de la Federación. Available at https://www.diariooficial.gob.mx/nota_detalle.php?codigo=5534594&fecha=13/08/2018> [accessed 1 Aug. 2019].
  • Sundue M.A., Testo W.L., Ranker T.A. (2015) Morphological innovation, ecological opportunity, and the radiation of a major vascular epiphyte lineage. Evolution 69(9): 2482–2495. https://doi.org/10.1111/evo.12749
  • Tuomisto H., Zuquim G., Cárdenas G. (2014) Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography 37(11): 1034–1046. https://doi.org/10.1111/ecog.00770
  • Toledo-Aceves T., Meave J.A., González-Espinosa M., Ramírez-Marcial N. (2011) Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management 92(3): 974–981. https://doi.org/10.1016/j.jenvman.2010.11.007
  • Vellend M. (2001) Do commonly used indices of β–diversity measure species turnover? Journal of Vegetation Science 12(4): 545–552. https://doi.org/10.2307/3237006
  • Vetaas O.R., Paudel K.P., Christensen M. (2019) Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. Journal of Biogeography 46(8): 1652–1663. https://doi.org/10.1111/jbi.13564
  • Wang G., Zhou G., Yang L., Li Z. (2003) Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology 165(2): 169–181. https://doi.org/10.1023/A:1022236115186
  • Watkins Jr J.E., Cardelús C., Colwell R.K., Moran R.C. (2006) Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Fern Journal 93(1): 73–83. https://doi.org/10.3732/ajb.93.1.73
  • Whittaker R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30(3): 279–338. https://doi.org/10.2307/1943563
  • Zotz G. (2013) The systematic distribution of vascular epiphytes – a critical update. Botanical Journal of the Linnean Society 177(3): 453–481. https://doi.org/10.1111/boj.12010