Plant Ecology and Evolution 152(1): 41-52, doi: 10.5091/plecevo.2019.1543
Ecological niche divergence associated with species and populations differentiation in Erythrophleum (Fabaceae, Caesalpinioideae)
expand article infoAnaïs-Pasiphaé Gorel, Jérôme Duminil§, Jean-Louis Doucet, Adeline Fayolle
‡ Terra Teaching and Research Center, Forest is life, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés, 5030 Gembloux, Belgium§ Evolutionary Biology and Ecology, CP160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 Av. F. Roosevelt, 1050 Brussels, Belgium
Open Access
Abstract

Background and aims – The isolation of populations inside forest refugia during past climate changes has widely been hypothesized as a major driver of tropical plant diversity. Environmental conditions can also influence patterns of diversity by driving divergent selection leading to local adaptation and, potentially, ecological speciation. Genetic and phylogenetic approaches are frequently used to study the diversification of African tree clades. However, the environmental space occupied by closely related species or intra-specific gene pools is barely quantified, though needed to properly test hypotheses on diversification processes.

Methods – Using species distribution models, we determined the bioclimatic constraints on the distribution of closely related species and intra-specific gene pools. Our study model, Erythrophleum (Fabaceae – Caesalpinioideae), is a tropical tree genus widespread across Africa, and vastly investigated for genetics. Here, we combined the available phylogenetic data with information on niche divergence to explore the role of ecology into diversification at the species and gene pool levels.

Key results – Ecological speciation through climate has probably played a key role in the evolution of the Erythrophleum species. The differential climatic niche of the species indicated adaptive divergence along rainfall gradients, that have probably been boosted by past climate fluctuations. At the gene pool level, past climate changes during the Pleistocene have shaped genetic diversity, though within Erythrophleum suaveolens, adaptive divergence also occurred.

Conclusions – We believe that ecological speciation is a key mechanism of diversification for tropical African tree species, since such climatic niche partition exist among many other genera. Modelling the environmental niche of closely related taxa, and testing for niche differentiation, combined with divergence dates offered new insights on the process of diversification.

Keywords
ecological divergence, ecological speciation, Erythrophleum, forest refuge hypothesis, gene pools, local adaptation, MaxEnt Algorithm, niche divergence, rainfall gradients, African tropical trees

References

  • Allouche O., Tsoar A., Kadmon R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  • Bivand R., Rundel C. (2014) rgeos: Interface to Geometry Engine - Open Source (‘GEOS’). Available from: https://rdrr.io/cran/rgeos/ [accessed 4 Feb. 2019].
  • Blach-Overgaard A., Svenning J.-C., Dransfield J., Greve M., Balslev H. (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33: 380–391. https://doi.org/10.1111/j.1600-0587.2010.06273.x
  • Blair M.E., Sterling E.J., Dusch M., Raxworthy C.J., Pearson R.G. (2013) Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. Journal of Evolutionary Biology 26: 1790–1801. https://doi.org/10.1111/jeb.12179
  • Bongers F., Poorter L., Van Rompaey R.S.A.R., Parren M.P.E. (1999) Distribution of twelve moist forest canopy tree species in Liberia and Côte d’Ivoire: response curves to a climatic gradient. Journal of Vegetation Science 10: 371–382. https://doi.org/10.2307/3237066
  • Couvreur T.L.P., Forest F., Baker W.J. (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biology 9: 44. https://doi.org/10.1186/1741-7007-9-44
  • Damasceno R., Strangas M.L., Carnaval A.C., Rodrigues M.T., Moritz C. (2014) Revisiting the vanishing refuge model of diversification. Frontiers in Genetics 5: 1–12. https://doi.org/10.3389/fgene.2014.00353
  • Dauby G., Duminil J., Heuertz M., Koffi G.K., Stévart T., Hardy O.J. (2014) Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover. Molecular Ecology 23: 2299–2312. https://doi.org/10.1111/mec.12724
  • Deblauwe V., Droissart V., Bose R., Sonké B., Blach‐Overgaard A., Svenning J.‐C., Wieringa J.J., Ramesh B.R., Stévart T., Couvreur T.L.P. (2016) Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics: Remotely sensed climate data for tropical species distribution models. Global Ecology and Biogeography 25: 443–454. https://doi.org/10.1111/geb.12426
  • Donkpegan A.S.L. (2017) Histoire évolutive du complexe Afzelia Smith (Leguminosae - Caesalpinioideae) dans les écosystèmes forestiers et savanicoles en Afrique tropicale. PhD Thesis, University of Liège, Liège, Belgium.
  • Dransfield J., Uhl N.W. (2008) Genera palmarum: the evolution and classification of palms. Kew, Royal Botanic Gardens.
  • Duminil J., Heuertz M., Doucet J.-L., Bourland N., Cruaud C., Gavory F., Doumenge C., Navascués M., Hardy O.J. (2010) CpDNA-based species identification and phylogeography: application to African tropical tree species. Molecular Ecology 19: 5469–5483. https://doi.org/10.1111/j.1365-294X.2010.04917.x
  • Duminil J., Brown R.P., Ewédjè E.-E.B., Mardulyn P., Doucet J.-L., Hardy O.J. (2013) Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae). BMC Evolutionary Biology 13: 195. https://doi.org/10.1186/1471-2148-13-195
  • Duminil J., Mona S., Mardulyn P., Doumenge C., Walmacq F., Doucet J.-L., Hardy O.J. (2015) Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. Journal of Biogeography 42: 1443–1454. https://doi.org/10.1111/jbi.12510
  • Engelbrecht B.M.J., Comita L.S., Condit R., Kursar T.A., Tyree M.T., Turner B.L., Hubbell S.P. (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80–82. https://doi.org/10.1038/nature05747
  • Fayolle A., Swaine M.D., Bastin J.-F., Bourland N., Comiskey J.A., Dauby G., Doucet J.-L., Gillet J.-F., Gourlet-Fleury S., Hardy O.J., Kirunda B., Kouamé F.N., Plumptre A.J. (2014) Patterns of tree species composition across tropical African forests. Journal of Biogeography 41: 2320–2331. https://doi.org/10.1111/jbi.12382
  • Fayolle A., Swaine M.D., Aleman J, et al. (2019) A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography 46: 454–465. https://doi.org/10.1111/jbi.13475
  • Gaviria J., Turner B.L., Engelbrecht B.M.J. (2017) Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8: e01712. https://doi.org/10.1002/ecs2.1712
  • Gerz M., Guillermo Bueno C., Ozinga W.A., Zobel M., Moora M. (2018) Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology 106: 254–264. https://doi.org/10.1111/1365-2745.12873
  • Gonmadje C.F., Doumenge C., Sunderland T.C.H., Balinga M.P.B., Sonké B. (2012) Analyse phytogéographique des forêts d’Afrique Centrale: le cas du massif de Ngovayang (Cameroun). Plant Ecology and Evolution 145: 152–164. https://doi.org/10.5091/plecevo.2012.573
  • Gorel A-P., Fayolle A., Doucet J-L. (2015) Écologie et gestion des espèces multi-usages du genre Erythrophleum (Fabaceae-Caesalpinioideae) en Afrique (synthèse bibliographique). Biotechnologie, Agronomie, Société et Environnement 19: 415–429.
  • Graham C.H., Ron S.R., Santos J.C., Schneider C.J., Moritz C. (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58: 1781–1794. https://doi.org/10.1554/03-274
  • Hardy O.J., Born C., Budde K., et al. (2013) Comparative phylogeography of African rain forest trees: A review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus Geoscience 345: 284–296. https://doi.org/10.1016/j.crte.2013.05.001
  • Heibl C., Calenge C. (2011) phyloclim: Integrating phylogenetics and climatic niche modelling. R Package. Available from: https://rdrr.io/cran/phyloclim/ [accessed 20 Sep. 2010].
  • Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. https://doi.org/10.1002/joc.1276
  • Holstein N., Renner S.S. (2011) A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC evolutionary biology 11: 28. https://doi.org/10.1186/1471-2148-11-28
  • Knouft J.H., Losos J.B., Glor R.E., Kolbe J.J. (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87: S29–S38. https://doi.org/10.1890/0012-9658(2006)87
  • Lönnberg E. (1929) The development and distribution of the African fauna in connection with and depending upon climatic changes. Arkiv för zoologi 21A: 1–33.
  • Maharjan S.K., Poorter L., Holmgren M., Bongers F., Wieringa J.J., Hawthorne W.D. (2011) Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient: functional taits affect species distribution. Biotropica 43: 552–561. https://doi.org/10.1111/j.1744-7429.2010.00747.x
  • Maley J. (1996) The African rain forest-main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. Proceedings of the Royal society of Edinburgh section B 104: 31–73. https://doi.org/10.1017/S0269727000006114
  • Mayr E., O’Hara R.J. (1986) The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40: 55–67. https://doi.org/10.2307/2408603
  • Muscarella R., Galante P.J., Soley-Guardia M., Boria R.A., Kass J.M., Uriarte M., Anderson R.P. (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198–1205. https://doi.org/10.1111/2041-210X.12261
  • Nakazato T., Warren D.L., Moyle L.C. (2010) Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany 97: 680–693. https://doi.org/10.3732/ajb.0900216
  • Philippon N., Cornu G., Monteil L., Gond V., Moron V., Pergaud J., Sèze G., Bigot S., Camberlin P., Doumenge C., Fayolle A., Ngomanda A. (accepted 2018) The light-deficient climates of Western Central African evergreen forests. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aaf5d8
  • R Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available from: https://www.R-project.org/ [accessed 15 Dec. 2015].
  • Rundell R.J., Price T.D. (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution 24: 394–399. https://doi.org/10.1016/j.tree.2009.02.007
  • Schnitzler J., Graham C.H., Dormann C.F., Schiffers K., Linder H.P. (2012) Climatic niche evolution and species diversification in the Cape flora, South Africa. Journal of Biogeography 39: 2201–2211. https://doi.org/10.1111/jbi.12028
  • Sosef M.S.M. (1994) Refuge begonias: taxonomy, phylogeny, and historical biogeography of Begonia Sect. Loasibegonia and Sect. Scutobegonia in Relation to Glacial Rain Forest Refuges in Africa. Wageningen Agricultural University Papers, Studies in Begoniaceae 5. Wageningen, Wageningen Agricultural University.
  • Sterck F., Markesteijn L., Toledo M., Schieving F., Poorter L. (2014) Sapling performance along resource gradients drives tree species distributions within and across tropical forests. Ecology 95: 2514–2525. https://doi.org/10.1890/13-2377.1
  • Suchel J.B. (1990) Les modalités du passage du régime climatique boréal au régime climatique austral dans le sud-ouest camerounais. Cahiers du Centre de Recherche de Climatologie 13: 63–76.
  • Swaine M.D. (1996) Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology 84: 419–428. https://doi.org/10.2307/2261203
  • Tosso D.F. (2018) Evolution et adaptation fonctionnelle des arbres tropicaux: le cas du genre Guibourtia Benn. PhD Thesis, University of Liège, Liège, Belgium.
  • Vanzolini P.E., Williams E.E. (1981) The vanishing refuge: a mechanism for ecogeographic speciation. Papéis Avulsos de Zoologia 34: 251–255.
  • Warren D.L., Seifert S.N. (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21: 335–342. https://doi.org/10.1890/10-1171.1
  • White F. (1978) The taxonomy, ecology and chorology of African Ebenaceae I. The Guineo-Congolian species. Bulletin du Jardin botanique national de Belgique 48: 245–358. https://doi.org/10.2307/3667933
  • White F. (1983) The vegetation of Africa, a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Paris, UNESCO.
  • Zachos J., Pagani M., Sloan L., Thomas E., Billups K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693. https://doi.org/10.1126/science.1059412