Plant Ecology and Evolution 152(1): 30-40, doi: 10.5091/plecevo.2019.1398
Mycorrhizae: a key interaction for conservation of two endangered Magnolias from Andean forests
expand article infoMarcela Serna-González, Ligia E. Urrego-Giraldo§, Nelson Walter Osorio|, Diego Valencia-Ríos
‡ Tecnológico de Antioquia – Institución Universitaria, Calle 78B No. 72A-220 Medellín, Colombia§ Departamento de Ciencias Forestales, Universidad Nacional de Colombia, A.A.568 Medellín, Colombia| Escuela de Geociencias, Universidad Nacional de Colombia, A.A.568 Medellín, Colombia¶ AFER agrobiológicos S.A., Carrera 50C No. 10 Sur – 185 Medellín, Colombia
Open Access
Abstract

Background and aimsMagnolia species are highly endangered in neotropical forests where they are highly endemic and often very rare. However, little is known about their nutritional and soil conditions in natural forests. In this study, we focused on two endangered Magnolia species that cohabit in the Colombian Andean cloud forests in order to identify their conservation and nutritional status. We hypothesize that these species might exhibit mycorrhizal colonization that enhance nutrients uptake in poor and disturbed soils.

Methods – Individuals of Magnolia jardinensis and M. yarumalensis were assessed in 11 000 m2 of Andean forests remnants from Jardín municipality (Antioquia, Colombia). Foliar and soil samples were analysed in the lab. Through a Principal Component Analysis (PCA) we identified the relationship between soil conditions and foliar nutrition. Root fragments and rhizosphere samples from seedlings and juveniles up to 3 m tall were collected to verify mycorrhizal colonization and presence of other microorganisms. Adults were excluded of the sampling due to the difficulties to differentiate their roots among the rest of the species in the forest fragments.

Key results – The surveys show that the M. yarumalensis population has an inverted J-shaped diametric distribution suggesting a potential recovering population while the smaller overall distribution of M. jardinensis in all diametric categories suggests that this species is likely to become extinct. Both species grow in acidic, infertile soils, although foliar nutrient concentrations did not correlate with soil-nutrient availability. Such a discrepancy and the high colonization levels of mycorrhizae (60–70%) and dark septate endophytes (40–45%), suggest that plant-microorganisms may facilitate nutrition and enhance survival of Magnolia species in stressed environments. Other fungi and bacteria were also found in their rhizosphere, but their role with respect to Magnolia species remains unclear.

Conclusions - Mycorrhizal colonization of endangered Magnolia species seems to play a key role to their performance in natural disturbed Andean forests. Aspects related to soil and rhizosphere ecology should be included in conservation projects for endangered and endemic plants.

Keywords
Rhizosphere, Andean cloud forests, Magnolia jardinensis, Magnolia yarumalensis, soil fertility, tree nutrition, conservation, mycorrhizae

References

  • Alarcón A.L. (2001) El boro como nutriente esencial. Revista Horticultura 155: 1–11.
  • Alemañy-Merly S.E. (1999) Magnolia portoricensis Bello. New Orleans, Department of Agriculture, Forest Service, Southern Forest Experiment Station.
  • Armenteras D., Rodríguez N., Retana J., Morales M. (2011) Understanding deforestation in montane and lowland forests of the Colombian Andes. Regional Environmental Change 11: 693–705. https://doi.org/10.1007/s10113-010-0200-y
  • Barrow J.R., Osuna P. (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments 51: 449–459. https://doi.org/10.1006/jare.2001.0925
  • Becker P., Castillo A. (1990) Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22: 242–249. https://doi.org/10.2307/2388534
  • Bleish L., Xie J. (1998) Selected nutrient analysis of plants in the diet of the Guizhou snub-nosed monkey (Rhinopithecus brelkichi). In: Jablonski N (ed.) The natural history of the doucs and snub-nosed monkeys: 252. London, World Scientific.
  • Blinn C., Bucker E. (1989) Normal foliar nutrient levels in North American forest trees Station Bulletin 590-1989 (Item No. AD-SB-3762). St Paul, University of Minnesota.
  • Cámara-Leret R., Tuomisto H., Ruokolainen K., Balslev H., Munch Kristiansen S. (2017) Modelling responses of western Amazonian palms to soil nutrients. Journal of Ecology 105: 367–381. https://doi.org/10.1111/1365-2745.12708
  • Cano M.A. (2011) Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. Una revisión. Revista U.D.C.A. Actualidad & Divulgación Científica 14: 15–31.
  • Castro F. (1996) Base técnica para el conocimiento y manejo del suelo del Valle del Alto Magdalena. Espinal, CORPOICA.
  • Chen H., Gurmesa G.A., Liu L., Zhang T., Fu S., Liu Z., Zhanfeng L., Shaofeng D., Chuan M., Jianming M. (2014) Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China. PLOS ONE 9: e99018. https://doi.org/10.1371/journal.pone.0099018
  • Clark D. (2002) Los factores edáficos y la distribución de las plantas. In: Guariguatta M., Kattan G. (eds) Ecología y conservación de bosques neotropicales: 193–222. Cartago, Ediciones LUR.
  • CORANTIOQUIA (2011) Avances en la estrategia para la conservación de la familia Magnoliaceae en jurisdicción de CORANTIOQUIA. Boletín Técnico Biodiversidad 6: 100–101.
  • de Oliveira Freitas R., Buscardo E., Nagy L., dos Santos Maciel A.B., Carrenho R. Luizão R.C.C. (2014) Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest. Mycorrhiza 24: 21–32. https://doi.org/10.1007/s00572-013-0507-x
  • Espinoza L., Slaton N., Mozaffari M. (2000) Como interpretar los resultados de los análisis de suelos. Agricultura y Recursos Naturales FSA2118SP. Little Rock, University of Arkansas.
  • Etter A., McAlpine C., Wilson K., Phinn S., Possingham H. (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems & Environment 114: 369–386. https://doi.org/10.1016/j.agee.2005.11.013
  • Fitter A.H., Helgason T., Hodge A. (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biology Reviews 25: 68–72. https://doi.org/10.1016/j.fbr.2011.01.002
  • Garcés de Granada E., Martha O.D.A., Bautista G.R., Valencia H. (2001) Fusarium oxysporum el hongo que nos falta conocer. Acta Biológica Colombiana 6: 7–26.
  • Girmé G., Grau E., Calvo M.A., Leonardo E. (2014) Clave dicotómica para la identificación de hongos aislados sistemáticamente en ambientes mediterráneos. Revista de La Sociedad Española de Microbiología 57: 69–71.
  • Grilli G., Urcelay C., Galetto L. (2013) Linking mycorrhizal fungi and soil nutrients to vegetative and reproductive ruderal plant development in a fragmented forest at central Argentina. Forest Ecology and Management 310: 442–449. https://doi.org/10.1016/j.foreco.2013.08.052
  • Gutierrez L., Vovides A.P. (1997) An in situ study of Magnolia dealbata Zucc. in Veracruz State: an endangered endemic tree of Mexico. Biodiversity & Conservation 6: 89–97. https://doi.org/10.1023/A
  • Heineman K.D., Caballero P., Morris A., Velasquez C., Serrano K., Ramos N., Gonzalez J., Mayorga L., Corre M.D., Dalling J.W. (2015) Variation in canopy litterfall along a precipitation and soil fertility gradient in a Panamanian lower montane forest. Biotropica 47: 300–309. https://doi.org/10.1111/btp.12214
  • Holdridge L.R. (1978) Ecología basada en zonas de vida. San José, IICA.
  • Hoshino D., Nishimura N., Yamamoto S. (2001) Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 152: 31–43. https://doi.org/10.1016/S0378-1127(00)00614-9
  • IUCN (2017) The IUCN Red List of Threatened Species. Version 2017-1. Available from http://www.iucnredlist.org [accessed 12 Dec. 2016].
  • Jaramillo D. (2002) Introducción a la ciencia del suelo. Medellín, Leo Digital.
  • Jordan C.F. (1985) Nutrient cycling in tropical forest ecosystems. Chichester, Wiley.
  • López D.M., Bock B.C., Bedoya G. (2008) Genetic structure in remnant populations of an endangered Andean Magnolia. Biotropica 40: 375–379.
  • Mandyam K., Jumpponen A. (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology 53: 173–189. https://doi.org/10.3114/sim.53.1.173
  • Osorio N.W. (2014) Manejo de nutrientes en suelos del trópico. Medellín, Vieco SAS.
  • Osorio W., Ruiz O. (2013) Guía para la toma de muestras. Laboratorio de Suelos. Medellín, Universidad Nacional de Colombia sede Medellín.
  • Otero J.T., Flanagan N.S., Allen Herre E., Ackerman J.D., Bayman P. (2007) Mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). American Journal of Botany 94: 1944–1950. https://doi.org/10.3732/ajb.94.12.1944
  • Pellissier L., Pinto-Figueroa E., Niculita-Hirzel H., Moora M., Villard L., Goudet J., Guex N., Pagni M., Xenarios I., Sanders I.,Guisan A. (2013) Plant species distributions along environmental gradients: do belowground interactions with fungi matter? Frontiers in Plant Science 4: 1–9. https://doi.org/10.3389/fpls.2013.00500
  • Perry E., Hickman G. (1999) A survey to determine the baseline nitrogen leaf concentration of twenty-five landscape tree species. Slosson Project Report 1999–2001. Available from http://slosson.ucdavis.edu/newsletters/Perry_200029041.pdf [accessed 14 Dec. 2018].
  • Peterson R.L., Wagg C., Pautler M. (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86: 445–456. https://doi.org/10.1139/B08-016
  • Primack R., Rozzi R., Feinsinger P., Dirzo R., Massardo F. (2001) Fundamentos de conservación biológica: perspectivas latinoamericanas. México D.F., Fondo de Cultura Económica
  • Reinoso Y., Vaillant D., Casadesús L., García E., Pazos V. (2007) Cepas de Brevibacillus laterosporus y Brevibacillus brevis antagonistas de bacterias y hongos fitopatógenos del Cultivo de la Papa (Solanum Tuberosum L.). Fitosanidad 11: 79–80.
  • Rivers M., Beech E., Murphy L., Oldfield S. (2016) The Red List of Magnoliaceae revised and extended. Richmond, Botanic Gardens Conservation International. Available from https://www.bgci.org/files/Global_Trees_Campaign/Magnolia/Magnoliaceae_RedList2016_LowRes.pdf [accessed 14 Dec. 2018].
  • Rodriguez R.J., Henson J., Van Volkenburgh E., Hoy M., Wright L., Beckwith F., Kim Y.-O., Redman R.S. (2008) Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal 2: 404–416. https://doi.org/10.1038/ismej.2007.106
  • Rodriguez R., Redman R. (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of experimental botany 59: 1109–1114. https://doi.org/10.1093/jxb/erm342
  • Rodriguez R.J., Freeman D.C., Durant Mcarthur E., Kim Y.O., Redman R.S. (2009) Symbiotic regulation of plant growth, development and reproduction. Communicative & Integrative Biology 2: 141–143.
  • R Studio Team (2015) RStudio: integrated development for R. Boston, RStudio, Inc. Available from http://www.rstudio.com/ [accessed 10 Dec. 2015].
  • Sánchez de Prager M., Posada R., Velásquez D. Narváez M. (2010) Metodologías básicas para el trabajo con micorriza arbuscular y hongos formadores de micorriza arbuscular. Palmira, Universidad Nacional de Colombia sede Palmira.
  • Sánchez-Velásquez L.R., Pineda-López M.D.R. (2009) Comparative demographic analysis in contrasting environments of Magnolia dealbata: an endangered species from Mexico. Population Ecology 52: 203–210. https://doi.org/10.1007/s10144-009-0161-5
  • Serna M., Velásquez C. (2003) Implementación de una estrategia de conservación de las especies de Magnoliaceae en la jurisdicción de CORANTIOQUIA Fase II. Medellín, CORANTIOQUIA–Jardín Botánico de Medellín.
  • Siqueira J.O., Carneiro M.A.C., Curi N., Rosado S.C.S., Davide A.C. (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management 107: 241–252. https://doi.org/10.1016/S0378-1127(97)00336-8
  • Soil Science Division Staff (2017) Examination and description of soil profiles In: Ditzler C., Scheffe K., Monger H.C. (eds) Soil survey manual. USDA Handbook 18. Washington, Government Printing Office. Available from https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054262 [accessed 23 May 2017].
  • ter Braak C.J.F., Šmilauer P. (2009) CANOCO for Windows. Version 4.56. Wageningen, Biometrics-Plant Research International.
  • Whipps J., Lumsden R. (1989) Biotechnology of fungi for improving plant growth: symposium of the British Mycological Society. Cambridge, NY, Cambridge University Press.
  • Wu D., Chen Z. (2000) Effects of human disturbance on the population dynamics of Manglietia fordiana Oliv. In: Liu Y.H., Fan H.M., Chen Z.Y., Wu Q.G., Zen Q.W. (eds) Proceedings of the International Symposium on the family Magnoliaceae, May 18–22, 1998, Guangzhou, China: 65–74. Beijing, Science Press.
  • Yang A., Lu L., Wu C., Xia M. (2011) Arbuscular mycorrhizal fungi associated with Huangshan Magnolia (Magnolia cylindrica). Journal of Medicinal Plants Research 5: 4542–4548.
  • Yepes M. (2007) Evaluación de las poblaciones del guanábano de monte (Magnolia silvioi) en el área de reserva del distrito de manejo integrado del cañón del río Alicante. Medellín, CORANTIOQUIA.
  • Yepes-Quintero A., Duque-Montoya A.J., Navarrete-Encinales D., Phillips-Bernal J., Cabrera-Montenegro E., Corrales-Osorio A., Álvarez-Dávila E., Galindo-García G., García-Dávila M.C., Idárraga A., Vargas-Galvis D. (2011) Estimación de las reservas y pérdidas de carbono por deforestación en los bosques del departamento de Antioquia, Colombia. Actualidades Biológicas 33(95): 193–208.
  • Zangaro W., Nisizaki S., Domingos J., Nakano E. (2003) Mycorrhizal response and successional status in 80 woody species from south Brazil. Journal of Tropical Ecology 19: 315–324. https://doi.org/10.1017/S0266467403003341