Plant Ecology and Evolution 151(1): 153-158, doi: 10.5091/plecevo.2018.1347
Drought stress inducing intraspecific variability in Potentilla tabernaemontani (Rosaceae), a calcareous grassland species
expand article infoMélanie Harzé, Grégory Mahy, Arnaud Monty
‡ University of Liège, Gembloux Agro-Bio Tech, Biodiversity and landscape Unit, 2, Passage des Déportés, BE-5030 Gembloux, Belgium
Open Access

Background and aims – Calcareous grasslands are among the most species-rich habitats in Western Europe. Populations of plant species characterizing these ecosystems are naturally submitted to high variability in environmental conditions at the very local scale, resulting in pronounced variation in functional traits. Individuals located on xeric parts of calcareous grasslands are characterized by plant traits that potentially ensure more successful performance under stressful conditions. In the context of increased frequency of summer heat waves based on climate change, our aim was to determine a possible intraspecific variability in drought response among individuals of one calcareous grassland plant species.

Methods – A greenhouse experiment was set up to follow survival of Potentilla tabernaemontani Asch. individuals according to their habitat of origin (xeric or mesic parts of Belgian calcareous grasslands) and the treatment applied (low or high drought stress).

Key results – The results demonstrated that individuals originating from xeric parts survived drought stress better than individuals from mesic parts of calcareous grasslands. Specific leaf area (SLA) of all individuals was very low in the experiment, allowing them to decrease water loss during drought stress. Leaf production was lower for individuals exposed to high drought stress while flower production was higher. That potentially expressed a trade-off between tolerance to water stress, individual growth and reproduction.

Conclusions – Local scale environmental heterogeneity deserves to be considered in conservation and restoration plans as it induces intraspecific functional variability between individuals and impacts individuals’ ability to survive drought stress.

intraspecific variability, calcareous grasslands, climate change, drought stress, greenhouse, ex situ, local scale


  • Abràmoff M. D., Magalhães P.J., Ram S.J. (2004) Image processing with imageJ. Biophotonics International 11: 36–41.
  • Ackerly D.D. (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 74: 25–44.
  • Adriaens D., Honnay O., Hermy M. (2006) No evidence of a plant extinction debt in highly fragmented calcareous grasslands in Belgium. Biological Conservation 133: 212–224.
  • Alard D., Chabrerie O., Dutoit T., Roche P., Langlois E. (2005) Patterns of secondary succession in calcareous grasslands: can we distinguish the influence of former land uses from present vegetation data? Basic and Applied Ecology 6: 161–173.
  • Albert C.H., Thuiller W., Yoccoz N.G., Douzet R., Aubert S., Lavorel S. (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology 24: 1192–1201.
  • Aronson J., Kigel J., Shmida A. (1993) Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia 93: 336–342.
  • Bennie J., Huntley B., Wiltshire A., Hill M.O., Baxter R. (2008) Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling 216: 47–59.
  • Bolnick D.I., Svanbäck R., Fordyce J.A., Yang L.H., Davis J.M., Hulsey C.D., Forister M.L. (2003) The ecology of individuals: incidence and implications of individual specialization. The American Naturalist 161: 1–28.
  • Butaye J., Honnay O., Adriaens D., Delescaille L.-M., Hermy M. (2005) Phytosociology and phytogeography of the calcareous grasslands on Devonian limestone in southwest Belgium. Belgian Journal of Botany 138: 24–38.
  • Cornelissen J.H.C., Lavorel S., Garnier E., Díaz S., Buchmann N., Gurvich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335–380.
  • Dujardin G., Bureau F., Vinceslas-Akpa M., Decaëns T., Langlois E. (2012) Soil functioning in a mosaic of herbaceous communities of a chalky environment: temporal variations of water availability and N dynamics. Plant and Soil 360: 197–213.
  • Fernández R.J., Reynolds J.F. (2000) Potential growth and drought tolerance of eight desert grasses: lack of a trade-off? Oecologia 123: 90–98.
  • Harzé M., Mahy G., Monty A. (2016) Functional traits are more variable at the intra- than inter-population level: a study of four calcareous dry-grassland plant species. Tuexenia 36: 321–336.
  • Hunt R. (2017) Growth analysis, individual plants. In: Thomas B., Murray B.G., Murphy D.J. (eds) Encyclopedia of applied plant sciences. Volume 1: plant physiology and development: 421–429. 2nd Ed. Oxford, UK, Elsevier.
  • Janssen J.A.M., Rodwell J.S., Criado M. G., Gubbay S., Haynes T., Nieto A., Sanders N., Landucci F., Loidi J., Ssymank A., Tahvanainen T., Valderrabano M., Acosta A., Aronsson M., Arts G., Attorre F., Bergmeier E., Bijlsma R.-J., Bioret F., Biţă-Nicolae C., Biurrun I., Calix M., Capelo J., Čarni A., Chytrý M., Dengler J., Dimopoulos P., Essl F., Gardfjell H., Gigante D., Giusso del Galdo G., Hájek M., Jansen F., Jansen J., Kapfer J., Mickolajczak A., Molina J.A., Molnár Z, Paternoster D., Piernik A., Poulin B., Renaux B., Schaminée J.H.J., Šumberová K., Toivonen H., Tonteri T., Tsiripidis I., Tzonev R., Valachovič M. (2016) European Red List of habitats - Part 2. Terrestrial and freshwater habitats. Brussels, European Commission. Available from [accessed 14 Nov. 2017].
  • Krauss J., Klein A.-M., Steffan-Dewenter I., Tscharntke T. (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity and Conservation 13: 1427–1439.
  • Mitchell R.M., Bakker J.D. (2014) Quantifying and comparing intraspecific functional trait variability: a case study with Hypochaeris radicata. Functional Ecology 28: 258–269.
  • Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., Church J.A., Clarke L., Dahe Q., Dasgupta P., Dubash N.K., Edenhofer O., Elgizouli I., Field C.B., Forster P., Friedlingstein P., Fuglestvedt J., Gomez-Echeverri L., Hallegatte S., Hegerl G., Howden M., Jiang K., Jimenez Cisneroz B., Kattsov V., Lee H., Mach K.J., Marotzke J., Mastrandrea M.D., Meyer L., Minx J., Mulugetta Y., O’Brien K., Oppenheimer M., Pereira J.J., Pichs-Madruga R., Plattner G.K., Pörtner H.O., Power S.B., Preston B., Ravindranath N.H., Reisinger A., Riahi K., Rusticucci M., Scholes R., Seyboth K., Sokona Y., Stavins R., Stocker T.F., Tschakert P., van Vuuren D., van Ypserle J.P. (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, IPCC. Available from [accessed 14 Nov. 2017].
  • Pérez-Harguindeguy N., Díaz S., Garnier E., Lavorel S., Poorter H., Jaureguiberry P., Bret-Harte M.S., Cornwell W.K., Craine J.M., Gurvich D.E., Urcelay C., Veneklaas E.J., Reich P.B., Poorter L., Wright I.J., Ray P., Enrico L., Pausas J.G., de Vos A.C., Buchmann N., Funes G., Quétier F., Hodgson J.G., Thompson K., Morgan H.D., ter Steege H., van der Heijden M.G.A., Sack L., Blonder B., Poschlod P., Vaieretti M.V., Conti G., Staver A.C., Aquino S., Cornelissen J.H.C. (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234.
  • Piqueray J., Bisteau E., Bottin G., Mahy G. (2007) Plant communities and species richness of the calcareous grasslands in southeast Belgium. Belgian Journal of Botany 140: 157–173.
  • Piqueray J., Bisteau E., Cristofoli S., Palm R., Poschlod P., Mahy G. (2011) Plant species extinction debt in a temperate biodiversity hotspot: community, species and functional traits approaches. Biological Conservation 144: 1619–1629.
  • Poschlod P., WallisDeVries M.F. (2002) The historical and socioeconomic perspective of calcareous grasslands – Lessons from the distant and recent past. Biological Conservation 104: 361–376.
  • Prendergast J.R., Quinn R.M., Lawton J.H., Eversham B.C., Gibbons D.W. (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365: 335–337.
  • R Development Core Team (2014) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available from [accessed 14 Nov. 2017].
  • Reyer C.P.O., Leuzinger S., Rammig A., Wolf A., Bartholomeus R.P., Bonfante A., de Lorenzi F., Dury M., Gloning P., Abou Jaoudé R., Klein T., Kuster T.M., Martins M., Niedrist G., Riccardi M., Wohlfahrt G., de Angelis P., de Dato G., François L., Menzel A., Pereira M. (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology 19: 75–89.
  • Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweig C., Pounds J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.
  • Volaire F. (2008) Plant traits and functional types to characterise drought survival of pluri-specific perennial herbaceous swards in Mediterranean areas. European Journal of Agronomy 29: 116–124.
  • WallisDeVries M.F., Poschlod P., Willems J.H. (2002) Challenges for the conservation of calcareous grassland in northwestern Europe: integrating the requirements of flora and fauna. Biological Conservation 104: 265–273.
  • Wellstein C., Chelli S., Campetella G., Bartha S., Galiè M., Spada F., Canullo R. (2013) Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodiversity and Conservation 22: 2353–2374.
  • Wright I.J., Reich P.B., Westoby M. (2001) Strategy-shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall, and high- and low-nutrient habitats. Functional Ecology 15: 423–434.