Plant Ecology and Evolution 151(1): 77-86, doi: 10.5091/plecevo.2018.1351
Morphophysiological dormancy, germination, and cryopreservation in Aristolochia contorta seeds
expand article infoNina M. Voronkova, Alla B. Kholina, Marina N. Koldaeva§, Olga V. Nakonechnaya, Vitaliy A. Nechaev
‡ Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100 let Vladivostoku, Vladivostok, 690022, Russia§ Botanical Garden-Institute, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Makovskii Str., 142, 690024, Russia
Open Access
Abstract

Background and aimsAristolochia contorta is a valuable medicinal plant, a relict of the Tertiary flora. Little is known about the germination biology of Aristolochia. The specific objectives of the present study were to (1) determine the type of dormancy in seeds of A. contorta, (2) describe the embryo development, and (3) explore the influence of deep freezing of the seeds in liquid nitrogen on their germinability.

Methods – Seeds were germinated in Petri dishes in sand previously sterilised at high temperature; germination experiments were carried out at 27±2°C under natural light. All measurements of seeds and embryos were done using light microscopy (LM). For cryopreservation, fresh seeds were placed in aluminium foil bags, immersed into liquid nitrogen (-196°С), and stored for twelve months.

Key results – The seeds of Aristolochia contorta have non-deep simple morphophysiological dormancy. A variety of embryo forms were revealed for Aristolochia species for the first time. Two cases of polyembryony were noted in A. contorta. The seeds of A. contorta are resistant to cryopreservation in liquid nitrogen.

Conclusions – High variability in dormancy depth and the extended germination period of A. contorta seeds can be considered as adaptive strategies for survival in unfavourable conditions and renewal of germination under optimal conditions. Cryopreservation helped maintain the viability of A. contorta seeds but did not lead to the breaking of the dormancy; hence, for successful germination, it is necessary to use methods of breaking dormancy after freezing.

Keywords
Aristolochia contorta, germination, seed dormancy, seed cryopreservation, embryo form, embryo development

References

  • Adams C.A., Baskin J.M., Baskin C.C. (2005a) Trait stasis versus adaptation in disjunct relict species: evolutionary changes in seed dormancy-breaking and germination requirements in a subclade of Aristolochia subgenus Siphisia (Piperales). Seed Science Research 15: 161–173. https://doi.org/10.1079/SSR2005207
  • Adams C.A., Baskin J.M., Baskin C.C. (2005b) Comparative morphology of seeds of four closely related species of Aristolochia subgenus Siphisia (Aristolochiaceae, Piperales). Botanical Journal of the Linnean Society 148: 433–436. https://doi.org/10.1111/j.1095-8339.2005.00402.x
  • Akulova Z.V., Alexandrova E.K. (1996) Fam. Aristolochiaceae Juss. In: Budantsev A.L. (ed.) Plant resources of Russia and adjacent states. Part II. Supplements to vol. 1: 103–104. SPb, Mir i semja–95.
  • Artyukova E.V., Kozyrenko M.M., Koren O.G., Kholina A.B., Nakonechnaya O.V., Zhuravlev Yu.N. (2012) Living on the edge: various modes of persistence at the range margins of some Far Eastern species. In: Galiskan M. (ed.) Genetic diversity in plants: 349–374. Rijeka, InTech. https://doi.org/10.5772/35032
  • Bai B., Toubiana D., Gendler T., Degu A., Gutterman Y., Fait A. (2015) Metabolic patterns associated with the seasonal rhythm of seed survival after dehydration in germinated seeds of Schismus arabicus. BMC Plant Biology 15: 37. https://doi.org/10.1186/s12870-015-0421-9
  • Beljaev E.A., Chistyakov Yu. (2005) A. Sericinus montela. In: Kostenko V.A. (ed.) Red Book of Primorsky Krai: Animals: 114–116. Vladivostok, Apel’sin.
  • Berjano Pérez R. (2006) Biología de la reproducción de dos especies mediterráneas de Aristolochia. PhD thesis, Universidad de Sevilla, Sevilla, Spain.
  • Bliss B.J., Wanke S., Barakat A., Ayyampalayam S., Wickett N., Wall P.K., Jiao Y., Landherr L., Ralph P.E., Hu Y., Neinhuis C., Leebens-Mack J., Arumuganathan K., Clifton S. W., Maximova S.N., Ma H., de Pamphilis C.W. (2013) Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology 13: 13. https://doi.org/10.1186/1471-2229-13-13
  • Chen S.Y., Kuo S.R., Chien C.T., Baskin J.M., Baskin C.C. (2007) Germination, storage behaviour and cryopreservation of seeds of Champereia manillana (Opiliaceae) and Schefflera octophylla (Araliaceae). Seed Science and Technology 35: 154–164. https://doi.org/10.15258/sst.2007.35.1.14
  • Dávalos A., Nuzzo V., Blossey B. (2015) Interactive effect of deer, earthworms and non-native plants on rare forest plant recruitment. Biological Conservation 187: 173–181. https://doi.org/10.1016/j.biocon.2015.04.025
  • Gois S.F., Almeida L.M. (2016) Análise da germinação de Aristolochia gigantea Mart. & Zucc. em diferentes temperaturas e substratos. Revista Cultural e Científica do UNIFACEX. 14: 36–52.
  • González F.A. (1991) Notes on the systematics of Aristolochia subsect Hexandrae. Annals of the Missouri Botanical Garden 78: 497–503. https://doi.org/10.2307/2399576
  • González F.A., Stevenson D.W. (2002) A phylogenetic analysis of the subfamily Aristolochioideae (Aristolochiaceae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 26: 25–58.
  • Hwang Sh., Kelly L.M., Gilbert M.G. (2003) Aristolochiaceae. In: Wu Z.Y., Raven P.H., Hong D.Y. (eds) Flora of China. 5: 246–269. St. Louis, Missouri Botanical Garden Press; Beijing, Science Press.
  • Kharkevich S.S. (1987) Aristolochiaceae. In: Kharkevich S.S. (ed.) Vascular plants of the Soviet Far East. 2: 19–21. Leningrad, Nauka.
  • Kurentsova G.E. (1968) Relic Plants of Primorye. Leningrad, Nauka.
  • Maekawa L., Albuquerque M.C.F., Coelho M.F.B. (2010) Germination of Aristolochia esperanzae O.Kuntze seeds under different temperatures and light conditions. Revista Brasileira de Plantas Medicinais 12: 23–30. https://doi.org/10.1590/S1516-05722010000100005
  • Nakonechnaya O.V., Nechaev V.A., Kholina A.B. (2010) The natural habitats characteristic of Aristolochia contorta Bunge in Primorye (Russia). Vestnik KrasGAU 12: 35–41.
  • Nakonechnaya O.V., Nesterova S.V., Voronkova N.M. (2012) Ontogeny of Aristolochia contorta (Aristolochiaceae) in Primorsky Territory. Botanicheskiy Zhurnal 97: 1505–1515.
  • Nakonechnaya O.V., Gorpenchenko T.Yu., Voronkova N.M., Kholina A.B., Zhuravlev Yu.N. (2013) Embryo structure, seed traits, and productivity of relict vine Aristolochia contorta (Aristolochiaceae). Flora 208: 293–297. https://doi.org/10.1016/j.flora.2013.03.010
  • Nakonechnaya O.V., Zhuravlev Yu.N., Bulgakov V.P., Koren O.G., Sundukova E.V. (2014) Genus Aristolochia on the Russian Far East (Aristolochia manshuriensis Kom. and A. contorta Bunge). Vladivostok, Dal’nauka.
  • Nechaev V.A., Nakonechnaya O.V. (2009) Structure of fruits and seeds and ways of dissemination of two species of the genus Aristolochia L. in Primorsky Krai. Biology Bulletin 36: 393–396. https://doi.org/10.1134/S1062359009040116
  • Nesterova S.V. (2008) Aristolochia contorta. In: Red Book of Primorsky Krai: Plants. 65. Vladivostok, Apel’sin.
  • Nikolaeva M.G. (2001) Ecological and physiological aspects of seed dormancy and germination (review of investigations for the last century). Botanicheskiy Zhurnal 86: 1–14.
  • Nikolaeva M.G., Tikhonova V.L., Daletskaya T.V. (1992) Long-term storage of wild-growing plant seeds: biological features of seeds. Information on genetic resource conservation. Pushchino, Ross. Akad. Nauk.
  • Oh S.-Y., Pak J.-H. (2001) Distribution maps of vascular plants in Korea. Seoul, Academy Book Publ. Co.
  • Ohwi J. (1965) Flora of Japan. Washington, Smithsonian Institute.
  • Pence V.C. (1991) Cryopreservation of seeds of Ohio native plants and related species. Seed Science and Technology 19: 235–251.
  • Schmidt O.C. (1935) Aristolochiaceae. In: Engler A., Prantl K. (eds) Die natürlichen Pflanzenfamilien 16b: 204–242. 2nd Ed. Leipzig, W. Engelman.
  • Scalon S.P.Q., Sene P.A.L., Zatti D.A., Mussury R., Scalon Filho H. (2007) Immersion in water, temperature, light and substratum effects on of cipo-mil-homens (Aristolochia triangulares Cham. & Schl.) seed germination. Revista Brasileira de Plantas Medicinais, Botucatu 9: 32–38.
  • Sokolova E.A. (2010) Solanaceae Family. In: Takhtajan A.L. (ed.) Comparative anatomy of seeds 7: 143–158. Saint-Petersburg, Nauka.
  • Tikhonova V.L. (1999) Long-term storage of seeds. Russian Journal of Plant Physiology 46: 400–408.
  • Voronkova N.M., Nesterova S.V., Zhuravlev Yu.N. (1996) Germination of seeds of some rare and endangered species of the Primorsky Land. Rastitelnye Resursy 32: 51–60.
  • Zhang C.-Y., Wang X., Su T., Ma C.-M., Wen Y.-J., Shang M.-Y., Li X.-M., Liu G.-X., Cai S.-Q. (2005) New aristolochic acid, aristololactam and renal cytotoxic constituents from the stem and leaves of Aristolochia contorta. Die Pharmazie 60: 785–788.
  • Zhou J., Xie G., Yan X. (2011) Encyclopedia of traditional chinese medicines: molecular structures, pharmacological activities, natural sources and applications. Vol. 5: Isolated compounds T–Z, references, TCM plants and congeners. Berlin & Heidelberg, Springer-Verlag. https://doi.org/10.1007/978-3-642-16741-6
  • Zhou J., Teixeira da Silva J.A., Ma G. (2014) Effects of smoke water and karrikin on seed germination of 13 species growing in China. Central European Journal of Biology 9: 1108–1116. https://doi.org/10.2478/s11535-014-0338-6