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Abstract
Background and aims – Brachystegia  is a species-rich tree genus found in tropical Africa and a typical element of 
Miombo woodlands, a widely distributed subtype of the Zambezian savanna. Plastid DNA was shown to be largely 
uninformative to assess species phylogenetic relationships due to widespread chloroplast capture among species. 
Here, we aim to assess the capacity of nuclear ribosomal DNA (rDNA) to clarify the phylogeny of Brachystegia species 
while accounting for intra-individual site polymorphisms (2ISPs), which are often present in rDNA and potentially 
phylogenetically informative.
Material and methods – Genome skimming sequencing on 47 samples representing 27 of the 29 currently recognized 
Brachystegia species, allowed us to retrieve complete nuclear ribosomal cistrons encoding for 18S, 5.8S, and 25S rRNA 
genes (35S rDNA). We reconstructed  the Brachystegia phylogeny using Maximum Likelihood methods based on the 
standard substitution model or integrating 2ISPs (GENOTYPE implementation in RAxML-NG). We additionally tested 
the effect of partitioning the data (one partition for rDNA genes and one for the ITS1+ITS2). We also conducted network 
inferences (Neighbor-Net splits graph), as a strict bifurcative approach might not properly model topological uncertainty 
at shallow phylogenetic depth.
Key results – 2ISPs-aware and standard phylogenetic reconstructions are largely congruent. We identified several well-
supported main clades clarifying the species relationships, including two clades of Miombo woodlands species. Miombo 
Group A includes species with ovoid to globose axillary dormant buds, while Miombo Group B species have flattened 
ones. Two morphologically close Brachystegia species (B. kennedyi and B. leonensis) found in Guineo-Congolian rain 
forests form also a robustly supported clade. 2ISPs coding allowed to identify an additional Guineo-Congolian clade (B. 
eurycoma and B. nigerica). Ribosomal DNA therefore proves more useful to explore the generic phylogeny than plastid 
DNA but the species relationships within and among the main clades remain poorly resolved, probably due to recent 
diversification and/or recurrent hybridization, so that the diversification of Brachystegia remains to be more properly 
characterised.
Conclusion – Nuclear and plastid phylogenetic reconstructions of Brachystegia species are discordant. Even if not well-
resolved, rDNA phylograms and networks are characterized by taxonomic sorting, while we observe a strictly geographic 
sorting in the plastid dataset. Most of the species’ relationships remain to be characterized using additional nuclear 
markers combined with in-depth morphological investigations.
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INTRODUCTION

Phylogenetic studies are needed to investigate the 
evolutionary processes that shaped the current African 
savannas (e.g. Maurin et al. 2014; Charles-Dominique et 
al. 2016; Davies et al. 2020). However, a critical evaluation 
of the phylogenetic history of typical Zambezian 
savanna flora elements is still lacking despite their wide 
distribution and key role in landscape dynamics through 
time (Linder 2014). The genus Brachystegia Benth. 
(Fabaceae, Detarioideae, Amherstieae in de la Estrella et 
al. 2018) constitutes one of the most iconic and dominant 
elements of the Zambezian Miombo woodlands (Frost 
1996), which cover ca 2.7 million km2 in southern, 
central, and eastern Africa (Campbell et al. 1996). Its 29 
tree or shrub/suffrutex species (following Lebrun and 
Stork 2008) occur in Guineo-Congolian rain forests (eight 
species) or in Zambezian savannas and woodlands (21 
species). Brachystegia is commonly known as one of the 
most taxonomically complex African tree genera (White 
1962), with several species having blurred morphological 
boundaries (e.g. B. boehmii-B. longifolia, B. bakeriana-B. 
spiciformis, and the three species of the B. tamarindoides 
“complex” in Brummitt et al. 2007). Several species are 
additionally particularly variable in their morphology 
(e.g. B. spiciformis) and led to the description of varieties 
at a regional scale (Leonard et al. 1952, but see Brenan 
1967; Brummitt et al. 2007). Hybridization is also 
suspected to occur, with up to 23 described putative 
hybrids (Palgrave 2002), but it was not demonstrated in a 
preliminary genetic investigation where putative hybrids 
were explained by morphological variation at the species 
scale (Palgrave 2002; Brummitt et al. 2007). The question 
remains open for Zambezian taxa, while there is no 
expected hybridization among Guineo-Congolian species 
(Palgrave 2002).

Plastid phylogeny

Boom et al. (2021) provided the first phylogeny of the 
genus Brachystegia by sequencing full plastomes but 
plastid haplotypes appeared shared among species at a 
local scale, suggesting widespread plastid capture (and 
thus, hybridization to some extent). Consequently, the 
plastid phylogeny reflects geographical rather than 
taxonomical affinities between samples, a pattern well 
documented for Quercus, Fraxinus, and Macaranga trees 
(e.g. Bänfer et al. 2006; Heuertz et al. 2006; Simeone et 
al. 2018). The plastid phylogeny delineates two main 
parapatric clades separating most of the Guineo-
Congolian specimens from the Zambezian ones (Boom 
et al. 2021). The Zambezian clade is structured in three 

parapatric clades, ranging from Tanzania to Angola 
(with eastern, central, and western subclades). The first 
cladogenesis event occurred during the late Miocene-
Pliocene, while the different Zambezian plastid clades 
originated in the Pliocene-Pleistocene. Interestingly, a 
longitudinal gradient of time to the most recent common 
ancestor (TRMCA) is observed for the three Zambezian 
subclades and suggests a westward expansion of the 
Miombo woodlands, from an original range situated in 
East Africa. Although plastid clades have provided many 
insights into the biogeographic history of Brachystegia, 
the evolutionary relationships between the species remain 
to be characterised. To this end, phylogenetic information 
from the nuclear genome is required.

The 35S cistron

The nuclear-encoded 35S ribosomal DNA (rDNA) 
cistron, comprising the 18S, 5.8S, and 25S rRNA genes, 
is the most easily accessible nuclear DNA region using 
genome skimming, i.e. shallow genomic sequencing 
(Straub et al. 2012). However, interpreting variation in 35S 
rDNA sequences and their internal transcribed spacers 
(ITS1 and ITS2) can be challenging due to their mode 
of evolution (Feliner and Rosselló 2007). In plants, the 
nuclear-encoded 35S rDNA is located in one or several 
loci where hundreds of copies follow each other in arrays 
that tend to be homogeneous at the intra-individual scale 
due to concerted evolution (Eickbush and Eickbush 2007). 
Complete concerted evolution is however not universal 
(Bailey 2003). Hence, a certain degree of polymorphism 
can occur inside or between arrays, due to heterozygosity, 
homeology, or paralogy, including pseudogenes (array 
silencing, e.g. Volkov et al. 2017), causing Intra-Individual 
Sites Polymorphisms (2ISPs; Potts et al. 2014). When 
2ISPs are not due to heterozygosity, they can sometime be 
fixed within a species, and therefore be phylogenetically 
informative. A potential trade-off between accuracy 
and simplicity in data analysis is to encode 2ISPs using 
IUPAC codes and to evaluate their putative impact on 
phylogenetic reconstructions. Potts et al. (2014) showed 
that treating 2ISPs as informative states rather than as 
ambiguous or missing characters could increase the 
resolution of phylogenetic reconstructions for highly 
polymorphic datasets (Potts et al. 2014, but see Fonseca 
and Lohmann 2020).

In addition to 2ISPs, other processes could blur the 
phylogenetic relationships between species at the nuclear 
genome, namely hybridization and incomplete lineage 
sorting (ILS) (Maddison 1997) or lack of divergence 
(e.g. Turner et al. 2016). Hybridization is suspected to 
occur among Brachystegia savanna species based on 
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morphological arguments (White 1962; Brenan 1967) 
but also given the evidence of recurrent plastid capture 
among species (Boom et al. 2021). ILS could also be 
likely, as dominant savanna tree species may have 
diversified recently and/or have large population sizes 
and long generation times, resulting in retention of 
ancestral polymorphism (Pennington and Lavin 2016). 
Finally, when DNA sequences are too short and/or evolve 
too slowly to accumulate enough mutations along the 
branches of a species tree, they offer limited resolution by 
lack of divergence.

Aims of this study

This work aims to investigate the diversification of 
Brachystegia, bridging the gap between genetic and 
morphological/taxonomic considerations through a 
multimarker phylogenetic approach. Namely, we use 
genome skimming on specimens from museum collections 
with degraded DNA (Zeng et al. 2018; Alsos et al. 2020) 
to assemble their nuclear ribosomal DNA, supplementing 
insights previously obtained from their plastomes (Boom 
et al. 2021). We will address the three following questions. 
Firstly, is the rDNA region phylogenetically informative 
for reconstructing the Brachystegia phylogeny? Secondly, 
does taking in account 2ISPs variability increase the 
resolution of our phylogenetic reconstructions? And 
thirdly, does rDNA provide complementary information 
to plastid DNA to infer the evolutionary history of the 
genus?

MATERIAL AND METHODS

Sampling and laboratory procedures

Brachystegia plant material (leaves) was collected 
on vouchers from the four following herbaria: BR, 
BRLU, FHO, and LISC (acronyms according to Index 
Herbariorum, Thiers continuously updated). In addition, 
we collected material (n = 10) from fieldwork and dried 
leaves using silica gel for DNA extraction purposes. In 
total, 47 individuals of 27 of the 29 described species of 
Brachystegia (following Lebrun and Stork 2008) were 
sequenced (Table 1). A sample of Julbernardia paniculata 
was added as outgroup to root the different reconstructed 
phylogenies. On both silica-dried and herbarium leaves, 
DNA extractions were performed using the DNeasy Plant 
Mini Kit (Qiagen, Netherlands) and the protocol detailed 
in Cappellini et al. (2010), except that the digestion step 
was performed overnight at 37°C rather than 55°C and 
we did not perform an initial wash step of the plant 
material with a bleach solution. DNA concentration and 
DNA size distribution were assessed with a Qubit® 2.0 
Fluorometer (Thermo Fisher Scientific, USA) and with an 
electrophoresis on a 1% agarose gel. The different genomic 
libraries were prepared using the NEBNext Ultra II DNA 
Library Prep Kit (New England Biolabs, USA) and were 

pooled equimolarly. After pooling, we sequenced the 
libraries on an Illumina NextSeq 500 instrument at the 
GIGA platform (Liège, Belgium), using the V2 mid-
output reagent kit and targeting one million reads per 
library (2 × 150 paired-end reads).

Ribosomal DNA assembly and annotation

First, the quality of the genomic libraries was checked 
using FastQC v.0.11 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), and then they were 
trimmed to remove low-quality regions and Illumina 
adapters using Trim Galore! v.0.4.5 (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). 
De novo assemblies of the rDNA sequences were done 
for each sample using GetOrganelle v.1.6.2 (default 
parameters for ribosomal assembly; Jin et al. 2020). 
Resulting graphs were inspected using Bandage v.0.8.1 
(Wick et al. 2015). The rDNA sequences were annotated 
using Infernal cmscan (Madeira et al. 2019) to delineate 
18S rDNA, internal transcribed spacer 1 (ITS1), 5.8S 
rDNA, internal transcribed spacer 2 (ITS2), and 25S 
rDNA regions of the 35S cistron. Reads were finally 
mapped on their respective assembly using the Burrows-
Wheeler Aligner BWA mem v.0.7.12 (Li and Durbin 
2009), and depth coverage was computed using Samtools 
v.1.9 (Li et al. 2009). We polished the assembled rDNA 
sequences and identified 2ISPs positions by conducting a 
consensus calling for each individual with the following 
parameters: min-var-freq 0.01, --min-avg-qual 30, --min-
freq-for-hom 0.9, and --min-coverage 3, using Varscan 
v.2.3.7 (Koboldt et al. 2012). Polymorphic sites were coded 
using IUPAC recommendations. Additionally, indels 
were coded as N. The polished sequences were deposited 
in GenBank (Table 1). The 18S–25S rDNA were aligned 
using MAFFT v.7 (Katoh et al. 2019) and the alignment 
was visually checked using MEGA7 (Kumar et al. 2016). 
The alignment is available in Supplementary file 1.

Phylogenetic reconstructions

In order to evaluate the impact of 2ISPs, we performed 
Maximum Likelihood (ML) based phylogenetic 
inferences with RAxML-NG software using three different 
implementations (Kozlov et al. 2019). (i) All 2ISPs were 
recoded as missing data (ML-N for missing data ‘N’). (ii) 
Binary 2ISPs were treated as ambiguous with both states 
of the coded ambiguity considered equiprobable, while 
2ISPs involving three nucleotides were coded as missing 
data, using a GTR+I+G substitution model (ML-A for 
‘Ambiguous’; Potts et al. 2014). (iii) Finally, we considered 
each 2ISP genotype as a transitional state, with the 
transitional probability included as additional parameter 
into the substitution model. This approach (ML-I for 
‘Informative’) followed a comparable logic as in Potts et 
al. (2014), except that we preferred the new GENOTYPE 
implementation in RAxML-NG, using the GTGTR4+I+G 
substitution model (see Kozlov et al. 2022: supplementary 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 1. Specimens used for the rDNA phylogeny. Most of them were also included in the plastid phylogeny of Boom et al. (2021) with 
two additional specimens of Brachystegia utilis, one of B. mildbraedii, and one of B. wangermeanna. Specimens are associated with 
herbarium vouchers, except the silica-dried sample ABo0065 (B. utilis), conserved in the silica-dried African plant leaves collection 
of Olivier Hardy (Université libre de Bruxelles, Belgium). The vouchers are hosted at BR, BRLU, FHO, and LISC. Two samples 
sequenced in Boom et al. (2021) were not included in this study due to taxonomic uncertainty (specimens Boom 38 attributed to B. 
boehmii and Duvigneaud & Timperman 2317 attributed to B. tamarindoides).

No Taxon Voucher Coordinates Country GenBank

1 B. allenii Hutch. & Burtt Davy Milne-Redhead & Taylor 7663 
(FHO) -10.689, 38.945 Tanzania OK335216

2 B. allenii Hutch. & Burtt Davy White 2406A (BR) -14.960, 30.246 Zambia OK335217

3 B. angustistipulata De Wild Jefford, Juniper & Newbould 2799 
(BR) -6.000, 30.000 Tanzania OK335218

4 B. bakeriana Hutch. & Burtt Davy Dechamps, Murta & da Silva 1327 
(BR) -14.817, 18.633 Angola OK335219

5 B. boehmii Taub. Procter 262 (FHO) -4.832, 29.962 Tanzania OK335220
6 B. boehmii Taub. Duvigneaud 2833 (BRLU) DR Congo OK335221
7 B. bussei Harms White 2410 (BR) -14.726, 30.762 Zambia OK335222
8 B. bussei Harms Burtt 4736 (BR) -6.041, 37.519 Tanzania OK335223

9 B. cynometroides Harms
Forest Product Research Laboratory 
n/a (FHO, collection date 6 Nov. 
1969)

Cameroon OK335224

10 B. eurycoma Harms Latilo & Daramola 28945 (BR) 7.710, 11.480 Nigeria OK335225
11 B. eurycoma Harms Chapman 156 (FHO) 7.230, 10.628 Nigeria OK335226
12 B. floribunda Benth. Barbosa 11037A (LISC) -12.179, 17.242 Angola OK335227
13 B. floribunda Benth. Boom 41 (BRLU) -11.530, 27.467 DR Congo OK335228
14 B. gossweileri Hutch. & Burtt Davy Barbosa 10988 (FHO) -10.735, 14.981 Angola OK335229
15 B. gossweileri Hutch. & Burtt Davy Mendes dos Santos 1980 (FHO) -12.148, 18.090 Angola OK335230
16 B. kennedyi Hoyle Meikle & Keay 581 (BR) 6.105, 5.893 Nigeria OK335231
17 B. kennedyi Hoyle Kennedy 2181 (FHO) 6.105, 5.893 Nigeria OK335232
18 B. laurentii (De Wild.) Louis ex Hoyle Wieringa 4529 (BR) -0.974, 10.925 Gabon OK335233
19 B. leonensis Hutch. & Burtt Davy Sesay 51 (BR) 8.913, -11.728 Sierra Leone OK335234
20 B. leonensis Hutch. & Burtt Davy Jongkind 9067 (BR) 5.646, -8.135 Liberia OK335235
21 B. longifolia Benth. Boom 37 (BRLU) -10.915, 28.517 DR Congo OK335236

22 B. longifolia Benth. Dechamps, Murta & da Silva 1400 
(BR) -11.983, 18.283 Angola OK335237

23 B. longifolia Benth. Boom 39 (BRLU) -11.530, 27.466 DR Congo OK335238
24 B. manga De Wild. Groome & Hoyle 1073 (FHO) -7.623, 33.403 Tanzania OK335239
25 B. manga De Wild. Duvigneaud 1214 (BR) -11.187, 27.905 DR Congo OK335240
26 B. michelmorei Hoyle Astle 797 (FHO) -9.796, 29.295 Zambia OK335241
27 B. microphylla Harms Leippert 6334 (BR) -4.485, 35.758 Tanzania OK335242
28 B. mildbraedii Harms Wieringa 5552 (BR) -1.435, 10.478 Gabon OK335243
29 B. nigerica Hoyle & A.P.D.Jones Chesters A124/30 (BR) 6.155, 6.770 Nigeria OK335244
30 B. nigerica Hoyle & A.P.D.Jones Lapido 19061 (FHO) 7.134, 3.840 Nigeria OK335245

31 B. puberula Hutch. & Burtt Davy Bamps, Martins & Matos 4473 
(BR) -14.217, 14.033 Angola OK335246

32 B. russelliae I.M.Johnst. Mendes 55 (BR) Angola OK335247
33 B. russelliae I.M.Johnst. Mendonça 4593 (FHO) -12.476, 16.295 Angola OK335248
34 B. spiciformis Benth. Liben 1742 (BR) -5.863, 23.392 DR Congo OK335249
35 B. spiciformis Benth. Boom 61 (BRLU) -11.488, 27.600 DR Congo OK335250

36 B. spiciformis Benth. Duvigneaud & Timperman 242 B2 
(BRLU) -10.598, 22.345 DR Congo OK335251

37 B. spiciformis Benth. Barbosa, Henriques & Moreno 2164 
(BRLU) -14.831, 13.621 Angola OK335252
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No Taxon Voucher Coordinates Country GenBank

38 B. stipulata De Wild. Boom 7 (BRLU) -11.510, 28.007 DR Congo OK335253
39 B. tamarindoides Welw. ex Benth. Torre 8678 (LISC) -15.096, 13.565 Angola OK335254
40 B. taxifolia Harms Boom 24 (BRLU) -11.477, 27.662 DR Congo OK335255
41 B. taxifolia Harms Boom 46 (BRLU) -11.533, 27.463 DR Congo OK335256
42 B. taxifolia Harms Duvigneaud 3614br2 (BRLU) -12.019, 27.784 DR Congo OK335257
43 B. torrei Hoyle Torre & Paiva 11521 (LISC) -15.587, 39.614 Mozambique OK335258

44 B. utilis Hutch. & Burtt Davy Boom silica collection ABo0065 
(BRLU) -11.515, 28.067 DR Congo OK335260

45 B. utilis Hutch. & Burtt Davy Salubeni & Chikuni 6642 (FHO) -12.069, 33.588 Malawi OK335259
46 B. wangermeeana De Wild. Boom 10 (BRLU) -11.516, 28.008 DR Congo OK335261
47 B. wangermeeana De Wild. Plancke 154/2025 (BRLU) -10.693, 23.182 DR Congo OK335262
48 J. paniculata (Benth.) Troupin Boom 51 (BRLU) -11.432, 27.469 DR Congo OK335215

Table 1. (continued) Specimens used for the rDNA phylogeny. Most of them were also included in the plastid phylogeny of Boom 
et al. (2021) with two additional specimens of Brachystegia utilis, one of B. mildbraedii, and one of B. wangermeanna. Specimens are 
associated with herbarium vouchers, except the silica-dried sample ABo0065 (B. utilis), conserved in the silica-dried African plant 
leaves collection of Olivier Hardy (Université libre de Bruxelles, Belgium). The vouchers are hosted at BR, BRLU, FHO, and LISC. 
Two samples sequenced in Boom et al. (2021) were not included in this study due to taxonomic uncertainty (specimens Boom 38 
attributed to B. boehmii and Duvigneaud & Timperman 2317 attributed to B. tamarindoides).

note 2). For each method, branch supports were computed 
based on 1000 bootstrap replicates and are provided as 
nonparametric bootstrap support (BS).

Mutation patterns and rates differ between the rRNA 
genes and the internal transcribed spacers (Baldwin et 
al. 1995). To assess the robustness of our phylogenetic 
reconstructions, we also used RAxML-NG with the 
different implementations described above but using two 
partitions (ITS1+ITS2 vs all rRNA genes; GTR+I+G model 
for each partition in ML-N and ML-A; GTGTR4+I+G 
model for ML-I). We also evaluated how the different 
main subunits of the 35S cistron are phylogenetically 
informative and/or might provide conflicting signals 
by conducting separate RAxML-NG analyses on each 
region (ITS1, ITS2, 18S, and 25S) with the GTGTR4+I+G 
substitution model. Finally, at shallow phylogenetic 
levels, we can expect non-tree-like evolutionary patterns 
(i.e. not explained by strictly bifurcating trees) due to 
reticulation, low-level genetic divergence and ILS. We 
therefore also applied network approaches and computed 
a Neighbor-Net splits graph using p-distance (i.e. 2ISPS 
aware approach) computed with the R package phangorn 
v.2.5.5 (Schliep 2011; Schliep et al. 2017) and SplitsTree5 
(Huson and Bryant 2006). We also computed a bootstrap 
consensus network (e.g. Schliep et al. 2017) using the 
ML-I bootstraps trees (ML-I 1 partition, 1000 BS trees; 
edge weights: tree size weighted mean; Threshold: 15).

Finally, to evaluate the ability of rDNA to retrieve 
clades with taxonomic significance, we assessed whether 
sequences divergence was correlated to taxonomy and/
or geographical distance using Mantel tests computed 
with the R package vegan v.2.5-6 (Oksanen et al. 2019). 
For the different clades identified in the reconstructed 
phylogenies, we searched for correlation between 
matrices of genetic distances, computed with the R 
package ape v.5.4-1 (raw distance; Paradis and Schliep 

2019), and taxonomic distances (0 and 1 indicating 
whether two individuals belong to the same species or 
not). Additionally, as geographic and genetic distance 
correlation can provide information regarding the 
geography of diversification (Abellàn and Ribera 2017) 
and/or events of hybridization at a local scale (e.g. Boom 
et al. 2021), Mantel tests were also performed between 
geographic (i.e. shortest distances computed by the R 
package geosphere v.1.5-10; Hijmans 2019) and genetic 
distances (R Core Team 2019).

RESULTS

Ribosomal assemblies and alignment

After the trimming step, we obtained a mean of 1,227,134 
reads per library (SD = 642,412). Raw sizes of the different 
rDNA assemblies ranged between 5,948 bp and 9,048 bp 
(mean = 7,526, SD = 757), and the length of the extracted 
18S–ITS1–5.8S–ITS2–25S sequences ranged between 
5,823 bp and 5,843 bp (mean = 5,828 bp). Mean depth 
coverage per sample ranged between 49X and 1,096X 
(mean = 260X, median = 192X). This wide range in mean 
depth coverage was also reflected in terms of relative 
rDNA reads content, i.e. between 0.19% and 3.35% of the 
total number of reads for each genomic library mapped 
on the corresponding assembly (mean = 0.81, SD = 0.66). 
The final alignment included a total of 5,973 sites and 
contained 166 variable and 78 parsimony-informative 
sites, when 2ISPs were not taken into account. When the 
outgroup J. paniculata was removed, these values drop 
to 108 and 75 variable and parsimony-informative sites, 
respectively. Taking into account the exclusive 2ISP sites, 
i.e. sites characterised by a single-defined nucleotide with 
ambiguity codes, the number of variable sites rose to 



Boom et al.: Nuclear phylogeny of Brachystegia306

394 and 338, respectively with and without J. paniculata. 
Details regarding the exact base composition of each 
sequence are available in Supplementary file 2.

Phylogenetic analyses

ML-N and ML-A phylogenetic reconstructions supported 
similar groupings, with minor differences (more details in 
Supplementary file 3: Fig. S1). For clarity, we only present 
the ML-A and ML-I cladograms, i.e. without branch 
lengths, in the main article (Fig. 1). The ML-N, ML-A, 
and ML-I phylograms are available in Supplementary file 
3 (Figs S2, S3, and S4). Both ML-A and ML-I inferences 
provided topologies with low bootstrap (BS) supports for 
most branches (Fig. 1). Additionally, among the 16 species 
represented by at least two individuals, only for four (ML-
A) or six (ML-I) of those species, the different individuals 
were placed together. At the intra-generic level, we 
delineated four robustly supported clades that form 
coherent taxonomic, ecological, and/or spatial entities. 
One to two clades of rain forest species (B. eurycoma-B. 
nigerica and B. kennedyi-B. leonensis clades) and two 
clades of Miombo species are well supported (BS = 75–100 

for ML-A, 84–99 for ML-I; Fig. 1). The positions of three 
species, B. cynometroides, B. laurentii, and B. mildbraedii, 
remain unresolved, even if the ML-I analysis suggested 
a B. cynometroides-B. laurentii grouping (BS = 64). The 
two identified Miombo clades are morphologically 
distinct according to floral, leaf, and axillary dormant bud 
features, corresponding roughly to the morphogroups A 
and B defined in the Flora of Tropical East Africa (Brenan 
1967). The Miombo Group A clade includes B. bakeriana, 
B. bussei, B. floribunda, B. manga, B. microphylla, B. 
puberula, B. spiciformis, B. tamarindoides, B. torrei, and 
B. utilis, whereas the Miombo Group B clade includes 
B. allenii, B. angustistipulata, B. boehmii, B. gossweileri, 
B. longifolia, B. russelliae, B. stipulata, B. taxifolia, and 
B. wangermeeana. Except for B. russelliae in both the 
ML-A and ML-I method and for B. boehmii in ML-I, 
none of the Miombo species was sorted taxonomically. In 
addition, three species with similar leaf morphology (i.e. 
B. bakeriana, B. floribunda, and B. spiciformis) are placed 
together but with limited support in the three different 
implementations (BS = 40 for ML-N, 44 for ML-A, 39 for 
ML-I).
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Figure 1. Maximum Likelihood phylogenetic inferences of Brachystegia species using rDNA sequences and two different coding 
schemes. Cladograms were produced using RAxML-NG software (Kozlov et al. 2019) and intra-individual site polymorphisms 
(2ISPs) were coded following the IUPAC nomenclature. 2ISPs are either considered as ambiguous (ML-A) or are coded as state into 
the substitution model (ML-I). Bootstrap supports (BS) are indicated on each branch.
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Partitioning the data (ITS1+ITS2 and rDNA genes) 
did not produce major differences that are supported 
with high bootstrap values (Supplementary file 3: Figs 
S5, S6, and S7). We again observed three to four robustly 
supported clades, low BS values for most of the branches, 
and individuals from the same species were only placed 
together in four or six cases depending on the RAxML-
NG implementation used (Supplementary file 3: Figs S5, 
S6, and S7).

The Neighbor-Net splits (Fig. 2) and the bootstrap 
consensus network graph (Supplementary file 3: Fig. S8) 
also identified four main clusters corresponding to the 
four main clades (i.e. Miombo Group A, Miombo Group 
B, B. eurycoma-B. nigerica, and B. kennedyi-B. leonensis). 
ITS2 was the most informative subunit as it identified the 
four main clades, contrary to the other subunits, although 
the bootstrap support values were moderate to low (BS = 
19–65; Fig. 2). The least informative subunit was the 18S 
rDNA gene, where B. eurycoma-B. nigerica is the only 
main clade found, with moderate support (BS = 60; Fig. 
2). The individual trees are available in Supplementary file 
3 (Figs S9–S12).

The correlation between the genetic and taxonomic 
distances was significant for the Miombo species as a 
whole (r = 0.19, p value = 0.001, n = 35) but not within 
Miombo Group A (r = 0.11, p value = 0.138, n = 17) 
or Miombo Group B (r = -0.069, p value = 0.219, n 
= 18). Hence, rDNA discriminated between different 
Miombo taxonomic groups but did not provide fine-
scale taxonomic information. The correlation between 
geographical and genetic distances was non-significant 
for Miombo species as a whole (r = 0 .12, p value = 0.028, 
n = 35) and for Miombo Group B (r = -0.02, p value = 
0.551, n = 18) but was significant within Miombo Group 
A (r = 0.34, p value = 0.001, n = 17). The mean genetic 
distance between individuals was higher in Miombo 
Group A than in Miombo Group B (i.e. differences 
in the nucleotide composition of 0.03% and 0.0055%, 
respectively) for roughly the same number of species (n 
= 10) and specimens (n = 17–18). Overall, the number 
of parsimony-informative sites within Miombo Group A 
and B was low (n = 17 in both clades).
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2ISPs coding and taxonomic consistency

Explicitly taking into account the retention of 
polymorphism allows for the detection of clades and 
species groups that align with morphology. For instance, 
regardless of the partitioning scheme (one vs two 
partitions), ML-N placed the specimen B. nigerica 30 
(Lapido 19061, Nigeria) as poorly supported sister to 
the B. kennedyi-B. leonensis clade (BS = 22–28), while 
the specimen B. nigerica 29 (Chesters A124/30, Nigeria) 
grouped with B. eurycoma (BS = 61–63). In ML-A, the 
specimen B. nigerica 30 moved to the B. eurycoma-B. 
nigerica subtree but with decreased support (BS = 9). 
With two partitions, however, the specimen B. nigerica 30 
remained sister, with low support, to the B. kennedyi-B. 
leonensis clade (BS = 25). In contrast, in ML-I, regardless 
of the partitioning scheme, both specimens of B. nigerica 
were resolved as sisters with moderate support (BS = 53–
57) in a well-supported clade composed of B. eurycoma 
and B. nigerica (BS = 80–84).

Ribosomal and plastid topology

As described in Boom et al. (2021), the plastid phylogeny 
delineates clades that correspond to geographic regions 
(Fig. 3). Five main plastid clades and two additional 
singleton lineages delineated seven regions. Two clades 
are part of a larger rain forest (RF) clade (Fig. 3; pentagon 
= Upper Guinea and Southwest Nigeria region; diamond 
= Southeast Nigeria-Cameroon region). The RF sister 
clade encompasses two basal lineages (Fig. 3; triangle = 
the Eastern Arc Mountains and surroundings; reverse 
triangle = Lower Guinea) in addition to three parapatric 
Miombo woodlands (MW) clades (Fig. 3; circle = Eastern; 
star = Central; square = Western). Brachystegia specimens 
in Miombo regions share plastid sequences from different 
clades, regardless of the rDNA clades to which they belong 
(most specimens from rDNA Miombo A and B clades 
possess plastid sequences from one of the three parapatric 
Miombo clades). Nuclear ribosomal DNA is therefore 
sorted according to the taxonomy (to some extent), while 
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Figure 3. Comparison between the ribosomal (subfigure A, left; ML-I tree) and plastid (subfigure A, right) phylograms 
of Brachystegia specimens, together with the geographic distribution of the specimens (subfigure B) in the miombo woodlands (MW, 
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Fig. 1 for the rDNA phylogram and are above 98 for all branches of the plastid phylogram.
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plastid DNA is geographically structured. This supports 
cytoplasmic genome exchanges between all the different 
Miombo species, including between Miombo Groups, as 
well as between RF species. For example, the specimen B. 
nigerica 30 has a plastid sequence that is very similar to 
those in the geographically nearby specimens B. kennedyi 
17 and 18 (Upper Guinea and Southwest Nigeria clade), 
while B. nigerica 29 plastome is part of the Southeast 
Nigeria-Cameroon region plastid clade including the two 
geographically nearby B. eurycoma specimens (see Table 
1). In contrast, the ML-I rDNA phylogeny supports the 
specimen B. nigerica 30 as being part of the B. nigerica-B. 
eurycoma clade, suggesting at least one event of B. kennedyi 
plastid capture by B. nigerica in Southwest Nigeria.

DISCUSSION

The contribution of ribosomal DNA to decipher the 
evolutionary history of Brachystegia

The sorting of individuals according to their taxonomic 
species in the rDNA trees is, for the Miombo woodland 
species, the exception irrespective of the treatment of 
2ISPs. However, reciprocal monophyly is supported 
for several Guineo-Congolian species and for the 
morphologically distinct Miombo Group A vs Miombo 
Group B. Correlation between geographic and genetic 
distances for Miombo Group A could suggest some 
inter-species gene flow at local scale but could not rule 
out past allopatric diversification. On the other hand, 
such correlation was not found in the Miombo Group B. 
Altogether, rDNA sequences provide insights regarding 
the Brachystegia evolutionary history, even if most of 
the relationships between species and clades remained 
unresolved due to insufficient phylogenetic information. 
This lack of discriminating signal between species could 
be due to the fairly recent origin of the different species 
(Boom et al. 2021), which could have evolved in parallel 
with the origin and expansion of C4 fire prone savannah 
during the late Miocene-Pliocene-Pleistocene (Maurin et 
al. 2014; Polissar et al. 2019). The relationships between 
the four main clades of Brachystegia and several of the 
Guineo-Congolian species (e.g. B. cynometroides, B. 
mildbraedii, B. laurentii) remain unresolved here, possibly 
because these lineages diverged in a short time (i.e. rapid 
radiation).

Nuclear ribosomal DNA also retrieved clades that are 
congruent with the taxonomy. The formerly recognized 
Miombo A and B groups in F.T.E.A. (Brenan 1967) 
(hereinafter “morphological Group A and B”) seem 
to represent two monophyletic groups, consistently 
supported as clades in our different reconstructions. 
Being established for East African species, the 
infrageneric system of Brenan (1967) does not include 
per se all Zambezian woodland species. Namely, four 
western Miombo species (B. bakeriana, B. gossweileri, 
B. tamarindoides, B. russelliae) and three narrowly 

distributed species (B. michelmorei, B. oblonga, B. torrei) 
were not covered by Brenan (1967). However, these seven 
species were covered by the Flora Zambesiaca (Brummitt 
et al. 2007). They show clear morphological affinities 
with species included in Brenan (1967). Brachystegia 
tamaridoides and B. torrei share traits with B. microphylla, 
while B. bakeriana has many traits in common with B. 
spiciformis. On the other hand, B. gossweileri, B. russelliae, 
and B. michelmorei are, based on buds/flowers/stipules/
auricles, part of the morphological Miombo Group B. 
Miombo Group species exhibit different vegetative and 
floral morphological trends (Brenan 1967). Morphological 
Group A species have globoid or ovoid buds, while 
species from morphological Group B have flattened 
buds enclosed in two large keeled scales. Morphological 
Group B species mostly have persistent stipules with 
basal reniform auricles, while in morphological Group 
A species stipules are generally caducous, mostly without 
auricles. Morphological differences are also reported for 
the bark, with relatively thick bark with vertical furrows 
in morphological Group B species. Other vegetative 
traits that have taxonomic value (e.g. the number and 
dimension of leaflets pairs) do not appear to show 
consistent differences between the two morphological 
groups. Regarding floral traits, tepals are absent, reduced, 
or shortly ciliate in morphological Group A species 
vs densely and long-ciliate in morphological Group 
B species. Most Brachystegia species have paniculate 
inflorescence, with the notable exception of three Miombo 
species: B. stipulata (morphological Group B) has raceme 
and/or paniculate inflorescences, while B. bakeriana and 
B. spiciformis species (morphological Group A) have 
racemose inflorescences (Brummitt et al. 2007). The 
latter two species are not always easy to discriminate in 
herbarium material (Brummitt et al. 2007), even if they 
differ in their habit, fruit, and bark traits (B. bakeriana 
is a shrub, while B. spiciformis is a tall tree) (White 1962; 
Brummitt et al. 2007). Sterile material of these species can 
be difficult to separate from B. floribunda (Brummitt et al. 
2007). In the different implementations to reconstruct an 
rDNA tree (ML-A, ML-N, and ML-I), we systematically 
retrieved a moderate/low supported clade that includes 
individuals from the three aforementioned species. 
Such clade can reflect a close evolutionary relationship 
between these species. It is somehow unexpected, as B. 
floribunda is morphologically closer to other species from 
the Miombo Group A (i.e. several sepaloid/shortly ciliates 
tepals and panicles for B. floribunda and other Miombo 
group A species, while tepals are reduced or absent in 
other species). Alternatively, we cannot exclude that some 
of the specimens were not correctly identified and might 
contribute to this apparent and unexpected species cluster. 
Preliminary results using additional nuclear markers and 
a denser sampling suggests that the identification of B. 
floribunda specimens might be problematic (Boom 2021).

Apart from Zambezian species, the relationship 
between B. leonensis and B. kennedyi is congruent with 
the views of Hoyle (1955), who recognized close affinities 
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of leaf anatomy, with however substantial differences in 
floral traits.

Plastid and rDNA provide complementary insights 
on the evolution of Brachystegia

The rDNA phylogeny (Fig. 2) is in sharp contrast with 
the recently published plastid gene tree showing a strict 
geographical sorting (Boom et al. 2021). The large 
number of plastid introgression events observed in the 
genus resulting in large spatial clusters supports at least 
some interspecific gene flow within and even between 
the major groups. Hybrids are suspected to occur within 
each Miombo woodland group, while morphological 
intermediates between the two groups were rarely 
observed (Brenan 1967), in agreement with the rDNA 
data. Correlation between genetic and spatial distances 
was not found for Miombo Group B, and uncertainty 
on the exact reason for correlation in Miombo Group 
A prevents us to formally designate hybridization as 
the main driver of rDNA genetic diversity distribution 
among species. This may reflect allopatric speciation, 
hybridization, or even unbalanced sampling. However, 
low within-group resolution prevents us from pinpointing 
nuclear introgression between species.

Phylogenetic information provided by 2ISPs in 
rDNA sequences

Properly evaluating the effect of coding intra-individual 
polymorphisms is out of the scope of this paper. 
However, we note that considering the polymorphism 
as recommended in Potts et al. (2014) allowed to 
identify clades that are congruent with morphological 
observations and increase support of critical branches. 
Therefore, 2ISPs could contain valuable phylogenetic 
information, as in recognizing the B. eurycoma and 
B. nigerica grouping, which is significant given their 
frequency in rDNA sequences (we found about three 
times more variable sites among Brachystegia samples 
when including 2ISPs). The exact mechanisms producing 
2ISPs remain to be characterized. Here, it is important 
to highlight that we mainly focused on tree topologies, 
and not on the other properties of phylogenetic trees, i.e. 
branch lengths. Works on Scrophularia and Bignoniaceae 
highlighted the strong impact of ambiguities coding 
schemes on branch lengths (Scheunert and Heubl 2017; 
Fonseca and Lohmann 2019) but they did not apply the 
here used RAxML-NG ML-I implementation. As seen 
in Supplementary file 3: Figs S2–S4, with our data, the 
treatment of 2ISPs did not substantially affect branch 
lengths despite a substantial impact on topology.

Perspectives: genomics, morphology, and species 
delineation

Overall, the rDNA gene trees in this study shed some 
light onto part of the evolutionary history of Brachystegia 

species but they cannot resolve relationships between 
closely related species because the assembled 18S–25S 
rDNA data is not sufficiently divergent and thus not 
sufficiently informative. The lack of resolution between 
Miombo species could be explained mainly by the non-
mutually exclusive following reasons: a recent evolutionary 
history of diversification and/or the occurrence of gene 
flow between the extant species.

If due to recent diversification, the proper 
characterisation of a species tree may need the use 
of several unlinked loci. Targeted enrichment could 
constitute an interesting strategy, as such methods allow 
the investigation of young and species rich genera (e.g. 
Inga in Nicholls et al. 2015). Moreover, specific baits 
already exist for the Detarioideae subfamily and already 
proved their potential to unravel species trees in recent 
genera, allowing a proper characterization of both 
evolutionary history and taxonomy (Ojeda et al. 2019; 
de la Estrella et al. 2020). Alternatively, Genotyping by 
Sequencing (GBS) or restriction-site associated DNA 
sequencing (RAD-seq) have been proven useful in order 
to evaluate species trees for plants, even in presence of 
polyploidy, hybridization, and incomplete lineage sorting 
(e.g. Afzelia in Donkpegan et al. 2020; Cycnoches in Pérez-
Escobar et al. 2020; Quercus in Hipp et al. 2020). Errors of 
identification in the diagnosed specimens (e.g. confusion 
between B. bakeriana, B. floribunda, and B. spiciformis) 
could be identified by such approaches, in addition by 
using a denser sampling for the problematic species (e.g. 
Inga in Dexter et al. 2010).

If the lack of resolution is due to reticulate history, the 
characterization of the nature, directionality, and extent 
of gene flow could be explored using targeted enrichment 
(e.g. Brownea in Schley et al. 2020). Moreover, the 
presence of interspecific gene flow could trigger a wider 
reflection on the species delineation within Brachystegia. 
The particularly weak nuclear genetic distances 
observed among the Miombo Group B individuals could 
potentially be explained by over-taxonomisation. Several 
species from the Miombo Group B form a morphological 
closely-related series with many intermediates (i.e. B. 
allenii, B. angustistipulata, B. boehmii, B. longifolia, and 
B. wangermeeana in Brenan 1967). Such a morphological 
continuum with different morphotypes might reflect 
shallow divergence, and the current taxa could be 
considered as having an infraspecific rank instead. 
Alternatively, the divergence between the current taxa 
could still be meaningful and all species would then 
be part of a wider interbreeding system (with limited 
gene flow between the different taxa), i.e. a syngameon 
(Grant 1981; e.g. oaks in Cannon and Petit 2020). The 
characterization of such a system could rely on combined 
genetic and morphological approaches (e.g. Tovar-
Sánchez and Oyama 2004).
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CONCLUSION

The analysis of the nuclear ribosomal DNA provides 
an overview of the evolutionary relationships between 
the different species of the African genus Brachystegia. 
As in some other tree genera, we found a general fit 
between nuclear phylogeny and morphology, and a near 
genus-wide decoupling of geographically sorted plastid 
signatures. A sole gene tree based on rDNA sequences 
associated with recent diversification did not allow to 
fully resolve the Brachystegia species tree. Other genomic 
approaches (i.e. target enrichment, GBS, RAD-seq) need 
to be tested towards this end. The data provided the 
opportunity to test different 2ISP scoring in phylogenetic 
inferences including the novel implementation in 
RAxML-NG. It proved here to be of some use, as it detects 
clades that would have been overlooked otherwise. The 
gain in topological accuracy however remained marginal 
in Brachystegia as the different coding schemes produced 
congruent and similar cladograms.
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