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RESEARCH ARTICLE

Background and aims – Numerous lineages in the Western Cape of South Africa show affinities with the 
floras of tropical Africa and Australasia. Isolepis subgenus Fluitantes, comprising seven to nine species, 
includes the broadly-defined I. fluitans, which occurs throughout Africa into Europe and Asia, as well as on 
both sides of the Indian Ocean. Thus, it is well suited for testing the generality of both the Cape-to-Cairo 
pattern of dispersal and transoceanic dispersal between southern Africa and Australasia. 
Material and methods – We inferred a dated population-level phylogeny based on new sequence data 
from the nuclear ITS and the chloroplast atpI–H gene regions. We constructed dispersal–extinction–
cladogenesis models in Lagrange to infer ancestral areas and to compare the likelihoods of stepping-stone 
and long-distance modes of dispersal. 
Key results – The Fluitantes originated in the Cape about 7 million years ago (mya). They spread stepwise 
onto the mountains of East Africa and thence into Europe and the islands of the Indian Ocean, seemingly 
tracking their ancestral habitat. Australasia was colonised by a single long-distance dispersal event ca 3 
mya. Incongruence between the plastid and nuclear gene trees was apparent for the Australasian taxa, I. 
crassiuscula, I. lenticularis, and I. producta, with their atpI–H sequences placing them with I. ludwigii 
in the Fluitantes and the ITS nrDNA resolving them in the Proliferae. Furthermore, two African taxa (I. 
graminoides, I. inyangensis) diagnosed on unique morphology are resolved as part of the widespread I. 
fluitans.
Conclusion – This study supports and extends the northward migration model that accounts for the Cape 
element of the Afromontane flora. Australasia was colonised directly from southern Africa, perhaps assisted 
by wind or waterfowl. Despite ancient hybridization associated with dispersal, we recognise the three taxa 
in Australasia as distinct, but synonymise I. graminoides and I. inyangensis into the widespread I. fluitans.
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INTRODUCTION

The Cape Floristic Region (CFR) has phytogeographical 
affinities with the high-altitude regions of the rest of Africa 
and with various parts of the southern Hemisphere, most 
notably Australasia (e.g. Linder 2005; Galley & Linder 
2006; Moreira-Muñoz 2007; Sauquet et al. 2009). It was 
hypothesised by Levyns (1964) that the CFR lineages 
generally had their origins in tropical Africa, but more recent 

studies suggest otherwise. In order to determine the migration 
histories of vegetation elements shared between the CFR and 
the Afromontane regions, Galley et al. (2007) reconstructed 
the ancestral areas of clades in Disa P.J.Bergius., Irideae, 
Pentaschistis Stapf, and Restionaceae. Their results indicate 
that migrations have overwhelmingly been northward from 
the Cape into the tropics, in most cases over the Drakensberg 
Mountain range. Taxa that have colonised Africa from 
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the north include Carex L., Ranunculus L., Alchemilla 
L. (Gehrke & Linder 2009), Arabis alpina L. (Koch et al. 
2006), and Lychnis Tourn. ex L. (Popp et al. 2008), but 
migration from the African “sky islands” to the CFR has not 
been demonstrated (Galley et al. 2007).

Many important Cape groups, including members of the 
Aizoaceae, Asteraceae, Cupressaceae, Liliaceae, Myrtaceae, 
Poaceae, Podocarpaceae, Proteaceae, Restionaceae, and 
Rutaceae, are shared between the CFR and Australasia 
(Goldblatt 1978; Verboom et al. 2003). Although these 
two regions and Antarctica constituted adjacent parts of 
Gondwana, many of the lineages are too young for their 
current distribution to be the result of vicariance due to the 
breakup of Gondwana 165 million years ago (mya). For 
example, the Restionaceae are among the earliest clades to 
diversify in the Cape and they are < 50 mya old (Linder et al. 
2003). Instead, more recent transoceanic dispersal between 
southwest Africa and southwest Australia has been invoked, 
e.g. for Proteaceae (Sauquet et al. 2009). Bergh & Linder 
(2009) summarise reports of nine further families, including 
the Cyperaceae, undergoing a total of 15 dispersal events (in 
both directions) between these two regions in the last 60 mya. 
The distribution of the sedges of tribe Schoeneae can only 
be accounted for by invoking at least five dispersal events 
between Africa and Australia in the last 30 mya (Verboom 
2006; Viljoen et al. 2013). Furthermore, a densely sampled 
species-level study in Schoenus L. (Elliott et al. 2021) 
shows a Paleocene origin in Western Australia, followed 
by Miocene dispersal to southern Africa, but no dispersal 
in the opposite direction. Muñoz et al. (2004) hypothesised 
that the affinities among regions of the so-called Austral 
Kingdom (sensu Morrone 2002), which presently comprises 
Australasia, temperate South America, and the CFR, result 
from wind-assisted long-distance dispersal, with Antarctica 
as a possible stepping stone before it became glaciated in the 
Tertiary.

Isolepis R.Br. is a genus in the Ficinia clade of the 
Cyperaceae tribe Cypereae (Muasya & Larridon 2021) that 
has centres of diversity in the CFR and Australasia (WCSP 
2021). Members of the I. fluitans group have been placed 
in the separate genus Eleogiton Link by some authors (e.g. 
Kadereit et al. 2016), but this clade is embedded within 
Isolepis according to DNA sequence data (Muasya et al. 
2001, 2009, 2014; Muasya & Larridon 2021) and was 
named subgenus Fluitantes (C.B.Clarke) Muasya in a 
recent monograph of Isolepis (Muasya & Simpson 2002). 
This clade comprises seven to nine species, which have a 
distribution ranging from the Western Cape through Africa, 
Europe, and South Asia to Japan, Indonesia, and Australasia. 
Members are found submerged or floating in seepages, bogs, 
and shallow pools, with southern African taxa occurring 
in the distinct sclerophyllous wetland type (Sieben et al. 
2017) found predominantly on nutrient-poor sandstone and 
quartzite substrates. 

Isolepis fluitans (L.) R.Br. is one of the few plant species 
that naturally span the southern-temperate, afrotemperate, 
and northern-temperate regions. It occurs from southern 
Africa, through tropical Africa, into northern Europe in the 
north and the East African Islands, India, and southeast Asia 
in the east (Muasya & Simpson 2002). Until recently, I. 

fluitans was thought to occur in Australia and New Zealand 
as I. fluitans var. lenticularis (R.Br.) Muasya, but Ito et al. 
(2016) have reinstated this taxon as a separate species (I. 
lenticularis R.Br.). Three closely related species are found 
in the Western Cape: I. rubicunda (Nees) Kunth in low-
altitude sandy (brackish) depressions; I. striata (Nees) 
Kunth floating in shallow water in mountain streams; and I. 
ludwigii (Steud.) Kunth occurring from the Western Cape to 
Natal on the edges of wetlands and ponds. Within tropical 
Africa, I. inyangensis Muasya & Goetgh. occurs in seepages 
and seasonally flooded montane grasslands from KwaZulu-
Natal to Inyanga, Zimbabwe, whilst I. graminoides 
(R.W.Haines & Lye) Lye grows only in alpine bogs on Mt 
Elgon and Mt Ruwenzori. There is contention as to whether 
these two African taxa are distinct from the widespread 
I. fluitans, as I. inyangensis is considered by some sources 
(e.g. WCSP 2021) as a synonym of var. fluitans, and our 
recent field observations show a continuum in diagnostic 
characters especially in the KwaZulu-Natal midlands. In the 
Pacific, I. crassiuscula Hook.f. is found in Japan, Papua New 
Guinea, Australia, and New Zealand, while I. lenticularis 
R.Br. occurs in Australia and New Zealand, and I. producta 
(C.B.Clarke) K.L.Wilson is an Australian endemic. Isolepis 
beccarii (Boeck.) Goetgh. & D.A.Simpson is only found 
on the Indonesian island of Sumatra (Muasya & Simpson 
2002). We hypothesise that the Fluitantes clade is, therefore, 
a further candidate for a sedge group showing this disjunct 
distribution due to transoceanic dispersal. 

In this study, we examined whether Isolepis subgenus 
Fluitantes supports the general pattern of tropical clades 
embedded within, rather than sister to, the Cape clades, 
by reconstructing ancestral areas on a population-level 
phylogeny of the group. We also determined whether the 
Fluitantes clade colonised Eurasia from Africa or vice versa 
and inferred the scenario with the highest likelihood of 
explaining the transoceanic distribution. By sampling widely 
among the populations to capture taxonomic and ecological 
diversity, we evaluate the support for recognising the tropical 
African taxa (I. graminoides, I. inyangensis) as distinct from 
I. fluitans.

MATERIAL AND METHODS

DNA extraction, PCR amplification, and sequencing

Nucleotide sequences were collected for 2–37 accessions 
from 69 populations representing all putative Fluitantes 
species except I. beccarii, as well as for three species from 
Ficinia Schrad. and three from Isolepis subgen. Isolepis sect. 
Proliferae Muasya (supplementary file 1).

Total DNA was extracted using either the CTAB 
method (Doyle & Dickson 1987; Gawel & Jarret 1991) 
or the straight-to-PCR method of Bellstedt et al. (2010). 
The CTAB protocol was modified as follows: 0.02–0.04 g 
silica-dried material was ground in liquid nitrogen, mixed 
with 700 µl CTAB 2% extraction buffer containing 1 µl 
mercaptoethanol, and incubated at 65°C for at least an hour. 
DNA was extracted with 600 µl chloroform-isoamyl alcohol. 
It was left to precipitate at 4°C for at least 24 hours, washed 
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in 75% ethanol, dried over silica, and resuspended in 50 µl 
sterile double-distilled water.

Phylogeny reconstructions of Isolepis based on the 
commonly used trnL-F and rps16 regions (e.g. Muasya & 
Larridon 2021) failed to resolve relationships within the I. 
fluitans clade. A more rapidly evolving chloroplast marker 
was sought by screening the “Tortoise and Hare” markers of 
Shaw et al. (2007) for a subset of the DNA samples. The atpI–
atpH intergenic spacer was selected as the chloroplast marker 
for this study on the basis of the number of variable sites and 
ease of amplification. The internal transcribed spacer (ITS) 
of the nuclear ribosomal gene region was the other marker 
used (primers ITS-4: White et al. 1990; ITS-L: Hsiao et al. 
1994). Gel electrophoresis of PCR products did not reveal 
multiple bands, and the sequencing chromatograms did 
not show multiple peaks, indicating a lack of differentiated 
paralogues of this gene region within our study group. Thus, 
direct sequencing of PCR products was judged adequate and 
strategies like cloning were unnecessary. 

Amplification of the ITS and atpI–H regions was 
performed with AB2720 thermal cyclers (Applied 
Biosystems, Inc., Foster City, California) in 30 µl reactions 
consisting of 1–2 µl DNA template in 3 µl buffer, 3 µl 
MgCl2, 1.2 µl dNTPs, 1 µl of each primer, 0.6 µl DMSO, 
and 0.2 µl KAPA Taq DNA polymerase (KAPA Biosystems, 
Ltd., Cape Town, South Africa). Reaction conditions for ITS 
were as follows: initial denaturation at 94°C for 2 min; 33 
cycles of denaturation at 94°C for 1 min, annealing at 52°C 
for 1 min, extension at 72°C for 2 min; and a final extension 
step at 72°C for 7 min. For atpI–H, we used the “slow and 
cold” program of Shaw et al. (2007). PCR products were 
cleaned and sequenced on ABI3730XL cycle sequencers at 
Macrogen, Inc. (Seoul, South Korea) or at the University of 
Stellenbosch DNA Sequencing Facility (Stellenbosch, South 
Africa). 

Phylogeny reconstruction

Consensus sequences of forward and reverse sequencing 
runs were assembled using SeqMan v.7.0.0 (DNASTAR, 
Inc.). Muscle v.3.8.31 (Edgar 2004) was used with the default 
settings for sequence alignment. The resulting alignment was 
verified manually, and an ambiguously aligned region was 
removed from the atpI–H matrix.

The resulting matrices contained 78 accessions and 
723 characters for ITS, of which 60% were variable, and 
45 accessions and 1163 characters for atpI–H, of which 
48% were variable. For estimating the atpI–H gene tree, 
72 characters were added by coding the indels using the 
“simple indel coding” algorithm of Simmons & Ochoterena 
(2000) as implemented in SeqState v.1.4.1 (Müller 2006). 
A combined matrix was created by concatenating the DNA 
characters, partitioned by marker. Gene tree incongruence 
was apparent in the positions of the Australasian I. 
crassiuscula, I. lenticularis, and I. producta. The nuclear and 
chloroplast sequences for these taxa were thus entered into 
the concatenated matrix as separate terminals so as to unlink 
their inferred topologies (a strategy advocated by Pirie et al. 
2009).

Model selection was done on the basis of AIC values 
calculated with MrModelTest v.2.3 (Nylander 2004), with 
maximum-likelihood trees optimised separately for each 
model using PhyML v.3.0 (Guindon & Gascuel 2003). 
The models chosen were K80+Γ for ITS and GTR+I+Γ for 
atpI–H. However, when analysing the combined matrix, the 
parameter estimates for the substitution rates and proportion 
of invariant sites in the atpI–H partition failed to converge, 
so the simpler HKY+Γ model was used instead.

Phylogenetic relationships in the Fluitantes clade were 
inferred using the Bayesian MCMC method implemented 
in MrBayes v.3.1.2 (Ronquist & Huelsenbeck 2003). 
All parameters except topology and branch lengths were 
unlinked across partitions. The MCMC sampler was run for 
10 million generations with four Metropolis-coupled chains 
at the default temperature setting and two simultaneous runs, 
sampling 10,000 sets of parameter estimates in each run. 
Tracer v.1.5 was used to confirm that the runs had converged 
and that sampling was sufficient. The first 10% of samples 
were discarded as burn-in and a majority-rule consensus tree 
was created from the post-burn-in parameter estimates in 
MrBayes. This was used as the starting tree for the dating 
analysis. The gene tree estimates converged more quickly, 
so they were only run for 3.15 million generations for ITS, 
discarding the first 0.15 million, and for 5 million generations 
for atpI–H, discarding the first 10%.

BEAST v.1.6.1 (Drummond & Rambaut 2007) was 
used to co-estimate the topology and the ages of the nodes 
in the Fluitantes tree. The data set was partitioned as 
above and analysed with the same substitution models. 
The uncorrelated log-normal relaxed clock (Drummond 
et al. 2006) was used as a rate model for both partitions, 
with a gamma-distributed prior (shape = 1, scale = 1). The 
birth rate in the Yule speciation model was parameterised 
with a gamma-distributed prior (shape = 1.5, scale = 1). 
The outgroup (Ficinia) and ingroup (Isolepis s.s.) were 
constrained to be reciprocally monophyletic and the prior 
probability distribution for the root height (the split between 
Ficinia and Isolepis) was set to a normal distribution centred 
on 10 mya with a standard deviation of 2 mya (Besnard et al. 
2009) using BEAUTI v.1.6.1. The analysis was run twice for 
20 million generations each, saving the parameter estimates 
and trees every 2000 generations. Tracer was again used to 
assess convergence and sampling. The first 5% of samples 
were discarded as burn-in. Post-burn-in tree samples were 
combined with LogCombiner v.1.6.1 and the maximum-
clade-credibility tree was annotated with the posterior 
probabilities of clades (PP) and the 95% highest posterior 
density (HPD) intervals of clade ages using TreeAnnotator 
v.1.6.1.

Dispersal history

Dispersal events were reconstructed on the dated tree and the 
likelihoods of different dispersal scenarios were estimated 
using the dispersal–extinction–cladogenesis (DEC) model 
in Lagrange v.20171013 (Ree & Smith 2008), with the 
maximum range size set to 2. For this purpose, specimen 
localities were divided into five regions: Western Cape, 
Southeast Africa (Eastern Cape to Malawi), Tropical Africa 
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(Tanzania to Ethiopia, including Central Africa and East 
African islands), Europe, and Australasia. The Tristan da 
Cunha and Japan samples were removed from the tree prior 
to analysis. Lagrange was run via a custom Python script 
to generate more easily parsable output, and the results 
were summarised graphically by plotting the proportional 
likelihoods of each region in the estimated ancestral range at 
each node of the tree using the packages ape v.5.5 (Paradis & 
Schliep 2019), phyloch v.1.5.3 (Heibl 2008), ggtree v.3.0.3 
(Yu et al. 2017), and tidyverse v.1.3.1 (Wickham et al. 2019) 
in R v.4.1.1 (R Core Team 2021).

We evaluated the likelihood of two dispersal-constrained 
models in comparison with the Unconstrained model: In 
the Overland model, dispersal to/from Australasia was 
constrained to be through Tropical Africa or Europe (in the 
absence of samples from South Asia), i.e. direct transoceanic 
dispersal from Southern Africa was disallowed. We also 
set up a Stepping Stone model, in which dispersal within 
Africa and Europe was limited to adjacent regions, in order 
to assess the prevalence of long-distance dispersal in the 
African Fluitantes.

Note that for the constrained models, dispersal between 
particular pairs of areas was set to 0, while the other 
transitions were all equally likely (set to 1). Thus, these 
dispersal rates are not free parameters, and the constrained 
and unconstrained models have the same number of 
parameters. This precludes the use of likelihood-ratio tests, 
so the model likelihoods were compared directly.

The analyses were run via Snakemake v.6.7.0 (Mölder 
et al. 2021). The workflow and custom analysis scripts are 
available at https://doi.org/10.5281/zenodo.5584964.

RESULTS

Dated phylogeny

The maximum sum of clade credibility tree summarised from 
the trees sampled in BEAST is shown in fig. 1. The topology 
is congruent with the MrBayes consensus tree at all nodes 
with PP ≥ 0.5, except that I. bicolor and I. sulcata in the 
Proliferae do not form a clade in the latter (supplementary 
file 4).

As expected from the conflict between the nuclear 
(supplementary file 2) and chloroplast (supplementary file 
3) trees, the ITS samples of I. crassiuscula, I. lenticularis, 
and I. producta were resolved closer to the I. prolifera 
clade than to the Fluitantes (fig. 1; PP = 1.00), while the 
atpI–H samples are closest to I. ludwigii in the Fluitantes 
(PP = 0.94). The three species found in Australasia were 
reciprocally monophyletic according to the ITS samples 
but not according to the atpI–H ones. With exception of the 
ITS sequences of these species, the Fluitantes are strongly 
supported as monophyletic (PP = 1.00).

The most basal divergence (i.e. crown node) within the 
Fluitantes was between the I. striata+rubicunda (CFR; PP = 
0.93) clade and the clade including I. ludwigii and I. fluitans 
(PP = 0.99), around 5 mya (HPD: 1.8–7.7 mya; excluding 
the Australasia nuclear data). Isolepis fluitans (IF; PP = 
0.96) diverged from the I. ludwigii (IL; PP = 0.90) clade at 

ca 4 mya (HPD: 1.5–6.4 mya) and then split into three main 
clades (IF1, IF2.1, IF2.2; fig. 1) ca 3 mya (HPD: 0.9–5.2 
mya). Isolepis inyangensis was found to be most similar to I. 
fluitans specimens from the IF1 clade but with weak support 
(PP = 0.70), while I. graminoides was resolved as part of the 
IF2.2 clade (PP = 0.86). Hence I. fluitans is not monophyletic 
as parts of the clades IF1 and IF2.2 are currently named as 
distinct taxa. 

Reconstruction of dispersal history

The inferred dispersal events between the five main regions 
occupied by the Fluitantes are also shown in fig. 1. There was 
no trend regarding speciation in allopatry versus sympatry at 
this geographic scale, neither by clade nor by region.

The most likely area of origin of the Fluitantes clade was 
the CFR (pL = 0.85; or CFR and southeast Africa, pL = 0.12). 
The ancestor of the IL clade was reconstructed as occurring 
in both the CFR and Southeast Africa (pL = 0.80; or CFR 
alone, pL = 0.10), splitting into Eastern Cape I. ludwigii 
and a CFR clade spreading to Australia as I. producta and I. 
crassiuscula.

With the level of sampling in this study, the Proliferae 
were inferred to be of Cape origin (pL = 0.60; or CFR and 
Australasia, pL = 0.28), splitting into clades containing the 
Australasian ITS specimens of I. producta, I. crassiuscula, 
and New Zealand I. lenticularis on the one hand, and I. 
prolifera, found throughout the Southern Hemisphere, on 
the other hand. The ITS sequences of Australian (+Japan) 
and New Zealand I. crassiuscula diverged ca 1 mya. Direct 
dispersal between Australasia and Southern Africa (i.e. CFR 
or Southeast Africa) was much more likely than via Tropical 
Africa (Unconstrained lnL = −76.7; Overland lnL = −111.3).

The IF clade was found to have originated in Southeast 
Africa (pL = 0.88). It dispersed to the Comoro Islands in IF1; 
to Kenya and Madagascar in IF2.2; and to East, Northeast, 
and West Africa in IF2.1. Members of this last clade were 
also found in Europe and Réunion. The likelihood of the strict 
Stepping Stone dispersal model (lnL = −75.4) was slightly 
higher but within 2 units of the model allowing long-distance 
dispersal within Africa and to Europe (Unconstrained lnL = 
−76.7). (The Stepping Stone model is able to have a higher 
likelihood because, as noted in Methods, it does not have 
fewer parameters than the Unconstrained model.)

DISCUSSION

This study sampled multiple populations of Isolepis subgenus 
Fluitantes with the aim of understanding the temporal and 
geographical context of its evolution. There is support for 
the clade to have originated in the CFR in the late Miocene, 
dispersing through montane habitats of tropical Africa to 
Eurasia and across the Indian Ocean into Australasia. The 
transoceanic dispersal is accompanied by a hybridization 
event, with diversification and further dispersal within 
Australasia. Isolepis fluitans is shown to be a widespread 
species, occurring in Africa (including the Indian Ocean 
Islands), Europe, and Asia; some populations displaying 
unique morphology (e.g. short peduncle (I. graminoides) or 
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Figure 1 – Dated phylogeny of the Fluitantes clade showing proportional likelihood of ancestral areas of each lineage under the Stepping 
Stone model. The scale bar is in mya.

more than 10 florets in a spikelet (I. inyangensis)) have been 
named as distinct species.

Previous studies reconstructing the phylogeny of the 
Fluitantes clade (Ito et al. 2016; Muasya & Larridon 2021) 
observed that chloroplast gene trees have different topologies 

from the single nuclear locus sampled. Our study further 
shows this incongruence, where the Australasian taxa have 
their nuclear DNA matching members of section Proliferae, 
whereas their plastid phylogeny supports their placement in 
Fluitantes. At lower taxonomic levels, as in this study, such 
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gene tree incongruence may be explained by three main 
processes: (i) divergence between paralogues (multiple 
gene copies) within a genome (Fitch 1970; Doyle 1991); (ii) 
incomplete lineage sorting, where the cessation of gene flow 
between populations is too recent (or has not yet occurred) for 
shared ancestral polymorphisms to have been differentially 
removed by genetic drift, or new mutations are still being 
shared among diverging populations (Pamilo & Nei 1988; 
Degnan & Salter 2005); or (iii) hybridization, where maternal 
and paternal genes have different histories and phylogenetic 
affinities (Soltis et al. 1996; Sang & Zhong 2000). See Ito 
et al. (2016) for a nuanced discussion on the possibility of 
the above three phenomena among the Fluitantes. As the 
Australasian taxa have some morphological similarity to 
the Proliferae (e.g. enlarged inflorescence bract) yet retain 
a plastid sequence and overall morphology of the Fluitantes, 
we interpret the topological incongruence to be caused by 
hybridization where the pollen originates from a member 
of sect. Proliferae. The nuclear sequences in the Australasia 
Fluitantes are more similar to the Proliferae, rather than 
intermediate or having multiple peaks at base positions, 
which we interpret as due to concerted evolution (Wendel et 
al. 1995).

Origin of Fluitantes 

The Fluitantes were found to have originated in the CFR 
around 7 mya. In the last 5 mya, the clade spread eastwards, 
then northwards onto the mountains of tropical Africa. 
More recently, it also colonised Australasia, apparently 
directly from the CFR. The age of the split between Ficinia 
and Isolepis s.s. around 8 mya (95% HPD: 3.8–12.6 mya) 
agrees with estimates from previous studies (Besnard et al. 
2009), and the tMRCA of I. bicolor and I. sulcata (median: 
0.41 mya, 95% HPD: 0.04–1.10 mya) is consistent with the 
geological age of the Tristan da Cunha islands in which they 
are endemic, i.e. 18, 3, and 0.5 mya for Nightingale Island, 
Inaccessible Island, and Tristan da Cunha, respectively (Gass 
1967).

Since the Proliferae clade was not sampled extensively 
and the clade sister to the Fluitantes (containing Isolepis 
cernua and I. hystrix) was not sampled at all in this study, 
there is some uncertainty about the reconstructed ancestral 
areas of both the Fluitantes clade and of Isolepis as a whole. 
However, as most of the members of the Proliferae are 
Australasian, with some species found in the Cape, SE and 
tropical Africa, South America, and the subantarctic islands, 
greater sampling is not likely to qualitatively alter the 
reconstructed ancestral area of the Proliferae (i.e. Australasia 
+ CFR). Similarly, for the rest of Isolepis (and Ficinia), we 
do not believe that the inferred ancestral area is substantially 
biased towards a CFR origin by our sampling, as the 
unsampled taxa are overwhelmingly CFR endemics (Muasya 
& Simpson 2002; Muasya & Larridon 2021).

African species

The different populations of Isolepis fluitans cover a wide 
geographic range despite relatively recent genetic divergence. 
The evolutionary history of the clade is, therefore, not 
necessarily an accurate reflection of its dispersal history, 

and we hesitate to draw inferences about events more recent 
than the divergence of the three main clades of this species. 
Wallis & Trewick (2009) had similar misgivings in their 
comparative phylogeographic study of New Zealand biota 
but successfully used a criterion of endemic lineages nested 
within paraphyla occupying the reconstructed source regions 
to interpret dispersal from the ancestral region into the 
region of the endemic clade. This is the approach we have 
emulated here, using the deeper, well-supported nodes of the 
Fluitantes tree.

In contrast to the African species of Carex, which have 
a Holarctic origin (Gehrke & Linder 2009; Larridon et 
al. 2021), the overall direction of dispersal of the African 
Fluitantes has been from the Cape, into eastern South Africa, 
and northwards from there, which Galley et al. (2007) 
termed the “Cape to Cairo” pattern. In addition to at least one 
southward dispersal event (the recolonization of southeast 
Africa from the tropics), several other events are apparent.

It appears that the Indian Ocean islands were colonised 
by members of three different clades of I. fluitans: from 
Southeast Africa to the Comoro Islands (IF1), from Tropical 
Africa to Réunion (IF2.1), and from Tropical Africa to 
Madagascar (IF2.2). The reconstructed timings of these 
divergences fall within the geologically determined age of 
Réunion of 2.5 mya (McDougall & Chamalaun 1969).

The rest of the IF2.2 clade (including I. graminoides) 
occurs only in tropical East Africa (including Madagascar). 
Clade IF2.1, on the other hand, is more widespread, occurring 
from southeast to northeast Africa, as well as in Cameroon 
and the DRC, and in Europe. There are no known phenotypic 
differences between these clades of I. fluitans to account for 
this difference in range size. It is interesting to note, however, 
that Fluitantes living in the tropics are only found at high 
altitudes, where conditions are more similar to the temperate 
habitats occupied by other members of the clade. This is 
in agreement with the hypothesis of niche conservatism 
(Wiens & Graham 2005), i.e. a lineage is more likely to 
track its ancestral habitat than to adapt to new environmental 
conditions. The African Fluitantes are unique in dispersing 
into the afrotemperate areas beyond South Africa, unlike the 
majority of lineages occurring in the sclerophyllous wetland 
type (Sieben et al. 2017), which are confined to nutrient-poor 
substrates of sandstone and quartzites. 

Even though the tribe Cypereae is pantropical, where 
Cyperus L. species predominantly occur in the savanna 
and grassland biomes, the afrotemperate members of 
the Fluitantes are embedded within and derived from a 
southern-temperate fynbos lineage (Ficinia clade sensu 
Muasya et al. 2009; Muasya & Larridon 2021). Note, also, 
that the Fluitantes followed the “out of the Cape” (Galley 
et al. 2007) dispersal path of migration: first east out of the 
CFR, then north into southeast Africa. That they did not 
migrate directly over the semi-arid Kalahari is surprising, 
considering their apparent ability to disperse over long 
distances (e.g. across the Indian Ocean), and indicates a 
limitation on establishment and persistence, rather than 
on mere vagility. It is also puzzling why the Fluitantes are 
absent in South America, unlike savanna wetland plants (e.g. 
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Hydrocharitaceae, Chen et al. 2012) which are pantropical, 
perhaps pointing to lack of suitable niches.

The composition of the Fluitantes communities shows 
turnover along its path. The Stepping Stone DEC model fit 
the data as well as the Unconstrained one, suggesting that 
dispersal on the African continent was limited to adjacent 
regions. Thus, species turnover may be the result of restricted 
gene flow and isolation-by-distance. In the CFR, however, 
three closely related species co-occur, suggesting a role 
for adaptation to diverse microhabitats, with I. rubicunda 
occupying low-lying brackish depressions, I. striata 
occurring at higher altitudes floating in water, and I. ludwigii 
inhabiting the edges of streams and wetlands. Within tropical 
Africa, I. fluitans (IF1; fig. 1) shows successive dispersal to 
nearby Afromontane habitats, but the pattern is complicated 
by variation in the ages of the “sky islands”. However, the 
occurrence of I. fluitans in India and South East Asia could 
not be rigorously evaluated due to lack of sampling in that 
region, but we speculate dispersal from tropical Africa based 
on morphological similarity in I. fluitans populations. 

Australasian species

The Unconstrained DEC model fit the data much better than 
the Overland one, supporting long-distance transoceanic 
dispersal between the Cape and Australasia. The contrast 
with the short dispersal distances within Africa might be 
explained by the influence of Antarctic circumpolar wind 
currents, thought to be important in the dispersal of other 
plant groups across the southern oceans (Muñoz et al. 2004; 
Sanmartín et al. 2007; Sauquet et al. 2009; Ito et al. 2016). 
Species of Juncaceae (e.g. Juncus L.) and Cyperaceae (e.g. 
Carex, Scirpus L.) have also been reported to be dispersed 
in the gut and in mud on the feet of migrant water fowl 
(Hedberg 1970; Soons et al. 2016), providing a possible 
alternative mechanism for the dispersal of the Fluitantes.

The cpDNA sequences of the Australasian taxa do not 
resolve the relationships between I. crassiuscula, I. ludwigii, 
and I. producta (fig. 1), and no further details can be deduced 
from the dispersal and speciation history of the clade within 
Australasia. Although atpI–H is one of the most variable 
cpDNA markers (Shaw et al. 2007), we concur with Zeng et 
al. (2010)’s recommendation that it should be combined with 
other chloroplast markers for resolving relationships at lower 
taxonomic levels.

Two processes present themselves as possible 
explanations for the incongruence between the gene trees for 
the Australasian taxa: incomplete lineage sorting and lateral 
gene transfer (hybridization). With only one nuclear and one 
chloroplast marker, the former cannot be ruled out. However, 
incomplete lineage sorting seems unlikely given that the 
Fluitantes and section Proliferae diverged over 8 million 
years ago, and that only these three Fluitantes in Australasia 
have nuclear DNA similarity to the Proliferae. In addition, 
two previous studies (Ito et al. 2016; Yano et al. 2016) using 
non-overlapping samples and DNA regions have concluded 
that hybridization is most likely source of the incongruence. 
The phylogeny of the Proliferae clade will also need to be 
resolved in order to identify the species most closely related 
to I. crassiuscula and I. producta at the incongruent loci. On 

the other hand, morphological similarity of the Australasian 
Fluitantes to the Proliferae (presence of involucral bract 
equal or longer than spikelet; one to two spikelets) point 
to hybrid morphology. Isolepis beccarii is likely to have 
dispersed from Australasia to Sumatra, arising from such 
a hybrid ancestor, as it shows an enlarged involucral bract 
(Muasya & Simpson 2002) similar to the Fluitantes that 
have hybrid origin and whose spikelets are more similar to 
I. prolifera. Other instances of hybridization among closely 
and distantly related species have been reported in Isolepis 
(see Yano et al. 2016) but several of such putative hybrids 
have not been verified using molecular approaches.

Taxonomic implications

Despite the reticulate evolution of the Australasian Fluitantes, 
we recognise the taxa included in this study (I. crassiuscula, 
I. lenticularis, I. producta) as distinct species. A thorough 
study of Isolepis in Australasia may increase the number of 
species in the group, as Muasya & Larridon (2021) recovered 
I. cyperoides as part of the Australasian Fluitantes clade. 
However, the species status of the African taxa embedded in I. 
fluitans (I. graminoides, I. inyangensis) is not supported. We 
note that other sources have questioned the distinctness of I. 
inyangensis, with WCSP (2021) considering it as a synonym 
of I. fluitans, and our recent field observations in KwaZulu-
Natal have revealed populations with morphological features 
(habit, floret number in spikelet) filling the continuum 
between the perceived discreet boundaries. We further view 
the distinctness of I. graminoides, whose inflorescences 
are borne on short peduncles and partially enclosed in the 
leaf sheaths, to be habit-driven (dwarfism) and a common 
phenomenon in high elevation (above 3500 m) bog 
sedges on Mt Elgon and in other Afromontane habitats. 
Furthermore, taxa previously recognised at varietal rank 
in Africa (var. major, var. nervosa) are resolved within the 
IF clade, and there is no morphological discontinuity nor 
genetic coherence to support such entities as distinct. Our 
study thus does not support recognition of infraspecific 
categories within I. fluitans, despite samples belonging to 
some of the previously recognized taxa (e.g. I. graminoides; 
fig. 1) forming distinct subclade derived out of I. fluitans, as 
there is evidently widespread dispersal and gene flow within 
tropical Africa.

Isolepis fluitans (L.) R.Br. (Brown 1810: 221) – Scirpus 
fluitans L. (Linnaeus 1753: 48) – Type: plate (Morison 1699: 
s. 8, t. 10, f. 31 “Gramen junceum clavatum minimum”; 
lectotype selected by Simpson et al. 2001)
Isolepis graminoides (R.W.Haines & Lye) Lye (Lye & 
Haines 1974: 525), syn. nov. – Type: KENYA • Trans Nzoia, 
Mt Elgon; 15 Dec. 1969; A.M. Hamilton 1418; holotype: 
MHU[MHU000062]; isotype: EA[EA000002577].
Isolepis inyangensis Muasya & Goetgh. (Muasya & Simpson 
2002: 283). syn. nov. – Type: ZIMBABWE • Inyanga; 14 
Nov. 1956; E.A. Robinson 1889; holotype: K; isotypes: B, 
BR[BR0000024914499], LISC, NRGH, PRE[PRE0574480], 
SRGH.
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