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RESEARCH ARTICLE

Background and aims – The research aim was to investigate the relation between large-scale geographic 
factors and the functional structure of the herbaceous layer of calcareous beech forests in the Apennines, 
managed as high forest.
Material and methods – We selected 163 plots (20 × 20 m), ranging from Central to South Italy, using 
a random stratified sampling design. We correlated the effect sizes of traits’ community-weighted means, 
functional richness, evenness, divergence, dispersion, and Rao’s quadratic entropy, with the main axes of 
variation in species composition.
Key results – The geographical range played a weak role in shaping the species composition of the 
herbaceous layer. However, we found evidence of functional convergence towards the northern sectors of 
the study area, where traits linked to resource retention strategies and vegetative spread are filtered. We did 
not find any evidence of convergence northwards for leaf phenology and pollination types. 
Conclusion – The increase of the intensity in the environmental stress was associated with a decrease of 
diversity for traits related to resource conservation strategies and vegetative propagation. On the contrary, 
the lower cold stress intensity southwards fostered a better niche partitioning, ensuring the coexistence of 
species with different modalities of resource acquisition and conservation.

Keywords – Apennines; assembly rules; ecosystem functioning; Fagus sylvatica; functional diversity; 
habitat filtering; plant traits.
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INTRODUCTION

The coenological and functional structures of plant 
communities depend on several factors acting at different 

scales (Lavorel & Garnier 2002; Mayfield et al. 2010; 
Götzenberger et al. 2012; Laughlin & Laughlin 2013), which 
select the viable trait combinations (de Bello et al. 2013). 
Among the main components of the functional structure of 
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plant communities are the community-weighted mean trait 
values (hereafter CWMs) and the different dimensions of 
functional diversity (hereafter FD). The former represents the 
average of trait values weighted by the relative abundance of 
each species and are useful to examine the shifts in single-
trait values in response to environmental changes (Garnier 
et al. 2004; Lavorel et al. 2008; Chelli et al. 2019a). The 
latter are quantified by different indices (Pakeman 2011), 
such as functional richness (FRic), functional evenness 
(FEve), functional divergence (FDiv), functional dispersion 
(FDis), and Rao’s quadratic entropy (Rao’s Q) (Villéger et 
al. 2008; Laliberté & Legendre 2010). These indices provide 
information on the distribution-coexistence mechanisms 
of species (Mouchet et al. 2010; Münkemüller et al. 2012; 
Bricca et al. 2021) and ecosystem functioning (Petchey et 
al. 2004; Mouillot et al. 2011). Specifically, FRic reflects 
the amount (or range) of functional space occupied by a 
species assemblage; FEve quantifies the regularity with 
which the functional space is filled by species, weighted 
by their abundance; FDiv expresses the degree to which 
abundance distribution in niche space maximizes divergence 
in functional characters within the community; FDis and 
Rao’s Q estimate, in a different way, the dispersion of species 
in trait space, weighted by their relative abundance (Villéger 
et al. 2008; Laliberté & Legendre 2010).

Most of the trait-based studies used only Rao’s Q as 
measure of FD to reveal changes along ecological/stress 
gradients (e.g. Botta‐Dukát 2005; de Bello et al. 2006; Lepš 
et al. 2006; Doležal et al. 2011; Ricotta & Moretti 2011; 
Mason et al. 2012; Tardella & Catorci 2015; Stanisci et al. 
2020; Bricca et al. 2021), whilst few of them analyzed all 
the components of the FD (de Bello et al. 2013; Sabatini et 
al. 2014; Tardella et al. 2019). As far as we know, none of 
them focused on how geographic-scale variations influence 
the different dimensions of the FD. In general, Mouchet et 
al. (2010) predicted that the prevalence of environmental 
filtering in stressed communities causes lower FD at wider 
geographical scales, because the selective pressure for niche 
differentiation between co-occurring species is less intense 
(Mason et al. 2013). Moreover, the trend of FD of single 
traits may differ depending on their adaptive meaning in a 
specific environmental context (Grime 2006; Tardella & 
Catorci 2015). However, there are several general ecological 
hypotheses that predict changes in the relative importance of 
community assembly processes along resource, disturbance, 
and/or stress gradients. One of them is the Stress-Dominance 
Hypothesis (SDH; Coyle et al. 2014, adapted from Swenson 
& Enquist 2007), which predicts that in a harsh environment, 
habitat filtering is the major driver of community 
composition, resulting in strong trait convergence, while in 
less stressful habitats limiting similarity is more important, 
resulting in trait divergence (Weiher & Keddy 1995).

In this study, we focused on forest ecosystems because 
the assessment of the variation in functional structure of 
plant communities along large-scale gradients has been 
performed mostly on grassland communities (e.g. Borgy et 
al. 2017), while one study focused on forest ecosystems at 
geographic scale, but did not assess variation in functional 
diversity (Chelli et al. 2019b). Specifically, we considered 
the herbaceous layer, as it serves a special role in maintaining 

structure and function of temperate deciduous forests 
(Gilliam 2014), contributes to primary production, carbon 
storage and nutrient supply (Whigham 2004), supporting 
about 90% of plant species richness, and because it is 
sensitive to environmental and dynamic changes (Catorci 
et al. 2010; Campetella et al. 2011; Scolastri et al. 2014, 
2017a; Bricca et al. 2020). We selected beech forests of the 
calcareous Apennine chain (Italy) since they are characterized 
by an intricate mixture of species in the understory. In the 
northern Apennines, there is a large number of arctic-alpine, 
circumboreal, and/or Euro-Siberian species, whereas the 
southern sectors are characterized by several endemic 
species and a fairly high number of amphi-Adriatic taxa. In 
contrast, the central Apennines lack species that could be 
used as differentials in relation to the other sectors (Di Pietro 
2009). The macro-climate influencing these mountain forest 
ecosystems encompasses the Temperate and Mediterranean 
bioclimatic regions (Pesaresi et al. 2017) and is characterized 
by the alternation of a seasonal period of cold stress and one 
of drought stress whose intensity and duration varies across 
geographical and topographical gradients (Rivas-Martínez et 
al. 2011). 

We hypothesized that in the beech forests of the 
calcareous Apennine chain (Italy), large-scale variability of 
herb species composition, due to biogeographic history and 
environmental heterogeneity (Di Pietro 2009), corresponds 
to changes in functional structure. In particular, we expected 
that increasing intensities of stress cause convergence of 
traits related to stress tolerance and avoidance strategies, 
in line with the SDH, and of traits linked to reproductive 
strategies aimed to overcome sexual recruitment problems. 
Cold stress indeed proved to cause a deviation from 
optimum temperatures for growth, leading to a syndrome of 
plant traits that includes very fast development, high rates of 
metabolism, short tissue duration, substantial below-ground 
storage organs (Körner 2016), as well as clonal growth 
organs and a self-pollination strategy to overcome sexual 
recruitment problems and to face unpredictable annual 
climatic fluctuations (Catorci et al. 2013). Drought stress, 
reducing soil water content (Joffre & Rambal 1993), fosters 
drought tolerance strategies, e.g. filtering a set of traits 
linked to resource retention, such as high seed mass (Baker 
1972) and scleromorphic leaf anatomy (Tardella et al. 2016). 
Moreover, summer drought stress shortens the time available 
for plants to complete the vegetative cycle, therefore may 
foster also drought avoidance strategy, e.g. filtering a set of 
traits linked to resource acquisition and fast reproduction, 
such as spring/early summer flowering besides spring green 
and overwintering green leaves (Catorci et al. 2013), low 
plant height (Nunes et al. 2017), high Specific Leaf Area 
(Gross et al. 2013), and vegetative propagation by bulbils 
(Lee & Harmer 1980; Catorci et al. 2013).

The research questions were: i) Can variations in herb 
layer species composition be detected in the considered 
geographic range? ii) Do these variations reflect changes 
in the functional structure in terms of CWMs and FD? iii) 
Can variations in functional structure be interpreted as the 
response of the herb layer to large-scale changes of stress 
intensity?
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MATERIAL AND METHODS

Study area

The study area (fig. 1) comprises the calcareous Apennine 
ridge (UTM coordinate system: from 33 T 313955.63 m 
E 4815305.47 m N to 33 S 595869.09 m E 4421909.44 
m N). From a bioclimatic point of view, the thermotype 
is supratemperate (with a longer-lasting period of winter 
cold stress northwards); the ombrotype ranges from 
subhumid to hyperhumid/ultrahyperhumid (Pesaresi et 
al. 2017; Cutini et al. 2021). The territory investigated is 
part of two bioclimatically/biogeographically-determined 
sections, central and southern Apennine section (Temperate 
Division, Apennine Province), and southern Tyrrhenian 
section (Mediterranean Division, Tyrrhenian Province) 
(Blasi et al. 2014). In the central and southern Apennine 
section (including the Umbria and Marche Apennine, the 
Lazio and Abruzzo Apennine, and the Campania Apennine 
subsections), mean annual temperatures range from 6°C to 
17°C; maximum temperatures of the hottest month 18.5–
33.1°C, minimum temperatures of the coldest month range 
from -4.7°C to 4.3°C, with occurrence of frost events (Blasi 
et al. 2014). Annual precipitation is uneven, and ranges from 
630 mm to over 2000 mm. There is a summer minimum 
and two maximums in autumn and winter; number of arid 
months 0–1 (Umbria-Marche Apennine) to 0–3 (Campania 
Apennine) (Blasi et al. 2014).

In the southern Tyrrhenian section (including the Lucania 
subsection), mean annual temperatures range from 11°C 
to 16°C, with maximum temperatures of the hottest month 
25.2–33.2°C, minimum temperatures of the coldest month 
between 0.1 and 3.5°C; a frost period occurs only over 1100 
m a.s.l. (Blasi et al. 2014). Annual precipitation ranges from 
672 mm to 1788 mm. The pluviometric regime shows a main 
maximum in winter/autumn and a minimum in summer; 1–3 
arid months (Blasi et al. 2014).

According to Mucina et al. (2016), the basiphytic beech 
forests of the study area belong to the Fagion sylvaticae 
Luquet 1926 alliance (Geranio nodosi-Fagion Gentile 
1975) and the Geranio striati-Fagion alliance Gentile 
1970 (Geranio versicoloris-Fagion Gentile 1970), while, 
following Willner et al. (2017), they are part of the Fagion 
sylvaticae s.l. alliance. The sampled beech forests mostly 
belong to the 9210* Habitat (Apennine beech forests with 
Taxus and Ilex EU 92/43 Directive) of the Natura 2000 
Network.

Sampling design and data collection

We selected nine calcareous massifs along the Apennine 
chain (fig. 1). To reduce the variation due to topographic 
factors, we used a stratified random sampling design, 
considering only Fagus sylvatica forests growing on 
north-facing slopes, with angles of 15–45°, at altitudes 
ranging from 1,000 to 1,700 m a.s.l. We performed this 
selection using georeferenced distribution maps of beech 
forests. Moreover, we selected stands managed as high 
forest (information gathered from local woodcutters and 
the archives of the Italian Forestry Service). Using a GIS 

Figure 1 – The Italian Peninsula with the location of the surveyed 
mountain massifs: Catria, Sibillini, Duchessa, Gran Sasso, Majella, 
Simbruini-Ernici, Sirente-Velino, Matese, and Pollino. Map created 
with QGIS v.2.14.10 (QGIS Development Team 2016).

generator of random points, we randomly selected a number 
of points per massif depending on the size of the massif and 
the extension of beech forests on each massif. We selected 
190 random points and then discarded those located less than 
100 m from the border of the forest patch, as well as those 
placed on watersheds or water drainage lines. Each point 
was the lower left-hand corner of a 20 × 20 m plot whose 
orthogonal sides are oriented northwards and eastwards. 
After a preliminary inspection of the sites, we excluded plots 
with heterogeneous aspect and/or slope angles, as well as 
those crossed by roads/pathways.

In total, we laid 163 plots, in which we recorded: altitude 
(m a.s.l.), aspect (azimuth degrees), slope (vertical degrees), 
and cover-abundance values of the plant species of the 
herbaceous layer, assigned using the Braun-Blanquet scale 
(Braun-Blanquet 1964). We executed relevés from mid-
May to late July 2015, to observe both the spring and the 
summer-growing species. In surveying the herbaceous layer, 
we considered only “resident species” sensu Gilliam (2014), 
namely, species that cannot grow taller than one meter 
during their life, which in the studied forest ecosystems are 
all herbaceous. Species nomenclature followed Bartolucci et 
al. (2018).
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To assess the differences in environmental conditions, 
we used as proxies the Ellenberg’s Indicator Values (EIVs; 
Ellenberg et al. 1991), adapted to Italian flora (Pignatti 
2005; Guarino et al. 2012), since EIVs proved to be useful 
in analyzing the drivers of vegetation change (i.e. McCollin 
et al. 2000; Klaus et al. 2012), especially when considered 
for comparison on a regional/local scale (Godefroid & Dana 
2007).

To assess the trait-based response of the herbaceous 
layer, we selected a set of traits to encompass different plant 
functions (Grime 2006), namely, resource acquisition (leaf 
persistence and vegetative propagation; Klotz et al. 2002, 
Klimešová & de Bello 2009), resource retention and stress 
tolerance ability (storage organs; Klotz et al. 2002; Klimešová 
& Klimeš 2006), and reproductive strategies (type of pollen/
spore dispersal and vegetative propagation; Klotz et al. 2002; 
Klimešová & Klimeš 2006). Indeed, in accordance with Díaz 
et al. (2004), Grime (2006), and Lavorel et al. (2007), plant 
functional dimension is a multidimensional concept which 
cannot be captured with a single function or trait. All traits 
were treated as categorical variables. A description of each 
trait, with a list of the respective states and data sources, is 
reported in table 1.

Data analysis

Preliminary analyses – We expressed species abundances in 
percentage values using the average cover values of Braun-

Blanquet classes: + (< 1%) – 0.5%; 1 (1–5%) – 3%; 2 (5–
25%) – 15 %; 3 (25–50%) – 37.5%; 4 (50–75%) – 62.5%; 5 
(75–100%) – 87.5%; rare species (r) were marked with the 
value of 0.1. We calculated the community unweighted mean 
values (CMs) of Ellenberg Indicator Values (EIVs) using 
presence/absence species data (Zelený & Schaffers 2012) as 
follows: 

CM p xi i
i

S

1

=
=

/

where CM is the community unweighted mean value of 
a given EIV, S is the number of species, pi = 1/N for all N 
species in the plot, and xi is the Ellenberg indicator value 
for species i. This index is widely used to reflect the site 
conditions better than the indicator values of individual 
species, because the occurrence of a species in a relevé 
may deviate from its optimum due to ecological tolerance 
(Kowarik & Seidling 1989). To calculate CMEIVs, we used 
R v.3.1.1 (R Core Team 2021) and the functcomp function 
implemented in the R package FD v.1.0-12 (Laliberté et al. 
2014).

To detect possible variations in species composition 
within the data set, we performed a Principal Components 
Analysis (PCA) on the Hellinger-transformed “relevés × 
herbaceous layer species (cover %)” matrix, as the Hellinger 
transformation is recommended for ordination of species 

Trait Trait state Description Data sources

Storage organ

Rhizome
The occurrence of storage organs is usually 
associated with the ability of vegetative 
propagation and dispersal. Occurrence and 
type of storage organ were identified following 
Krumbiegel (2002) and Klimešová & de Bello 
(2009).

Klotz et al. (2002) and 
Klimešová & de Bello (2009), 
checked and supplemented by 
field observations.

Bulb
Tuber
Tap root
Turio
Secondary storage root

Vegetative 
propagation

Rhizome

Besides sexual (generative) propagation, 
many plant species are able to propagate and 
disperse asexually by vegetative propagation. 
Occurrence and type of vegetative propagation 
were identified following Krumbiegel (2002), 
and Klimešová & de Bello (2009).

Klotz et al. (2002) and 
Klimešová & de Bello (2009), 
checked and supplemented by 
field observations.

Bulbil
Bulb
Root tuber
Stem tuber
Root/tuber splitter
Roots with adventitious buds
Root shoot
Runner
Turio

Leaf phenology

Persistent green
Classification of how long a leaf persists on a 
plant from emergence until cast, according the 
categories indicated in Klotz & Kühn (2002).

Klotz et al. (2002), checked 
and supplemented by authors’ 
observations.

Summer green
Spring green
Overwintering green

Pollen/spore dispersal 
system

Selfing Classification of the type of pollen transfer, 
according the categories indicated in Klotz & 
Kühn (2002). The vector of spores is always 
wind.

Klotz et al. (2002)Insects
Wind

Table 1 – List of the traits and respective states, with a brief description and a list of data sources.
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abundance data (Rao 1995; Legendre & Gallagher 2001). 
To perform PCA and Hellinger transformation, we used the 
rda and decostand functions in the R package vegan v.2.4-4 
(Oksanen et al. 2017). To interpret the ecological meaning 
of the main axes of species variation, we calculated the 
regressions of altitude, slope, and CMEIVs against the PC1 and 
PC2 object scores using the envifit in the R package vegan 
v.2.4-4 (Oksanen et al. 2017). To test the significance of the 
CMEIVs, we used the modified permutation test designed by 
Zelený & Schaffers (2012), which uses mean randomized 
EIVs (i.e. calculated from species EIVs randomized among 
species) to remove the influence of species composition and 
avoid high type-I error rates (Zelený & Schaffers 2012). 
The modified permutation test was run in R, using the 
envfit.iv function provided by Zelený & Schaffers (2012). 
We calculated the correlations between PCA scores and 
significant variables, using the Kendall non-parametric test 
(the cor.test function in the R package stats v.3.1.1).
Variations of the functional structure associated with the 
pattern of species composition – To detect variations of 
functional structure, at first, we calculated for each plot and 
trait state the CWM value, following the equation of Garnier 
et al. (2004):

CWM P Tj ij ij
i

n

1

=
=

/

where CWMj is the community-weighted trait state of the 
plot j, Pij is the relative abundance of the species i in the plot 
j, Tij is the mean trait state value of the species i in the plot j 
(which in this study corresponds to 1 or 0, i.e. the presence/
absence of the trait state, as we treated all traits as categorical 
variables) and n is the number of species with the considered 
trait state.

Afterwards, for each plot, to capture distinct facets of FD, 
we calculated FRic, FEve, FDiv, FDis, and Rao’s Q indices 
(Mason et al. 2005, 2012; Villéger et al. 2008; Laliberté & 
Legendre 2010; Mouchet et al. 2010) using Gower’s distance 
(Legendre & Legendre 1998; Pavoine et al. 2009; de Bello 
et al. 2010). A description of the meaning of each index is 
shown in supplementary file 1.

Since the number of traits can affect the values of 
the calculated FD index (Petchey & Gaston 2002) and 
because different traits might respond differently to the 
same ecological processes (Grime 2006), analyzing the 
combination of multiple traits (e.g. by averaging across all 
traits) might not detect the pattern of functional variation 
(Laliberté & Legendre 2010). Therefore, to avoid such 
problems, we assessed FD facets of each trait separately 
(Garnier et al. 2004; Lepš et al. 2006; Lavorel et al. 2008; 
Mason et al. 2011). 

Prior to calculating FD indices and CWMs, as one 
species may have more than one state of a trait, each trait 
was coded by as many binary variables as the number 
of potential individual states of the considered trait. For 
example, considering the plant trait vegetative propagation, 
Orthilia secunda had trait state value “1” for runner, root 
shoot, and root with adventitious buds, and “0” for the 
other vegetative propagation modes (supplementary file 2). 

We computed these indices for each trait by processing the 
matrices “relevés × herbaceous layer species (cover %)” and 
“herbaceous layer species × trait states (presence/absence)”. 
For species showing more than one state for the same 
trait, each state was weighted independently with species 
cover. We performed FD and CWMs calculations using the 
dbFD function implemented in the R package FD v.1.0-12 
(Laliberté et al. 2014). 

To remove the influence of confounding factors (e.g. 
species richness, diversity), we analysed if the FD indices 
and CWMs of a given trait differed from random expectation 
for each trait separately (Botta-Dukát & Czúcz 2016). To 
create the null models, we obtained 999 simulated values 
for each of the indices reshuffling in the whole data set the 
trait states among the species in the “species × trait states” 
matrix, keeping intact the trait states combination (between-
plot randomization sensu Botta-Dukát & Czúcz 2016). We 
produced null distributions using the replicate function and 
the randomizations using the taxashuffle function in the 
R package Picante v.1.7 (Kembel et al. 2010) and checked 
their normality by visual inspection of frequency distribution 
histograms. Since the null distributions were not normal, and 
in this case the calculation of standardized effect size (SES; 
see de Bello 2012) may lead to misleading interpretations, 
we used probit-transformed p values as effect sizes (Botta-
Dukát 2018). To calculate effect size (ES) values, we used 
the Pvalue function, provided by Botta-Dukát (2018) and 
the probitlink function, with argument inverse = FALSE 
(R package VGAM v.1.1-1; Yee 2021). Positive ES values 
(i.e. higher observed FD than expected by the null model) 
indicate trait divergence, while negative values (i.e. lower 
observed FD than expected by the null model) indicate trait 
convergence (Botta-Dukát & Czúcz 2016; Halassy et al. 
2019).

We used Kendall’s non-parametric correlation test 
between ES values (for each FD index of each trait, and for 
trait states’ CWMs) and the gradient depicted by PCA axes 1 
and 2 object scores to examine the variation in the intensity 
of abiotic filtering along an environmental gradient (Halassy 
et al. 2019). We ran Kendall’s correlation tests using the cor.
test function (R package stats v.3.1.1). 

Information on species trait, observed FD and CWM 
indices, PCA axis score 1 and 2, and Effect Size (ES) can be 
found in supplementary files 2 & 3.

RESULTS

Variations in the herb layer species composition 

PCA axes 1 and 2 explained 9.8% and 5.9% of the total 
variance of the species data set. Altitude was related to PCA 
axes 1 and 2 (vector scores -0.88 and 0.46 respectively; R2 
= 0.21; p = 0.001), while slope was unrelated to both PCA 
axes (vector scores 0.21 and -0.97; R2 = 0.01; p = 0.58) (fig. 
2). Altitude negatively correlated with PCA axis 1 scores 
(Kendall’s tau = -0.238; p = 7.038 × 10-6) and positively with 
PCA axis 2 scores (Kendall’s tau = 0.332; p = 3.828 × 10-10). 
EIVs were not significantly related to the PCA axes 1 and 2 
(supplementary file 4).
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The visual inspection of the PCA ordination plot 
(fig. 2) allowed to identify a discontinuity along the first 
axis, which divided plots in the southernmost part of the 
study area (Pollino massif) from all the others. Asyneuma 
trichocalycinum and Cardamine enneaphyllos were the 
species most strongly associated to PCA axis 1 in two 
opposite directions, while Galium odoratum was positively 
associated with axis 2 (fig. 2). 

Variations in the herb layer functional structure 

Trait states’ ESs showing a positive correlation with PCA axis 
1 object scores were: selfing and wind pollen/spore dispersal; 
rhizome as storage organ; and rhizome, bulb, and bulbil as 
vegetative propagation modes (table 2). Trait states whose ES 
values showed a negative correlation with PCA axis 1 object 
scores were: persistent leaf phenology, pollination by insects, 
secondary storage root, and runner (table 2). Several of these 
trait states also followed the gradient highlighted by PCA 
axis 2. ES values of pollination by wind, tuber, secondary 
storage root, and bulb were negatively related, while spring 
leaf phenology, pollination by insects, rhizome (with both 
storage and vegetative propagation functions), and runner 
were positively related to the axis 2 scores (table 2).

ES-FRic, ES-Rao’s Q, and ES-FDis values of vegetative 
propagation and storage organs were negatively correlated 
with PCA axis 1, as well as ES-FDiv of vegetative 
propagation and ES-FEve of storage organs (table 3). In 
contrast, we found an increase of ES-Rao’s Q and ES-
FDis values for pollen/spore system along PCA axis 1. ES-
FDis and ES-Rao’s Q of pollination and ES-FEve of leaf 
phenology negatively correlated, while ES-FDiv of leaf 
phenology positively correlated to PCA axis 2 scores (table 
3).

DISCUSSION

Variations in herb layer species composition

The ordination of plots along the PCA axis 1 follows the 
biogeographical partition of the study area in the southern 
Tyrrhenian and central-southern Apennine sections depicted 
by Blasi et al. (2014). The quite low variance explained by 
PCA axis 1, as well as the independence of PCA axis 2 from 
the geographic location of plots, suggest that the considered 
geographical range plays a factual but weak role as driver of 
the recorded species differences in the herb layer. From the 

Figure 2 – Principal Components Analysis ordination graph (axes 1 and 2) performed on the species dataset. Codes of the centroids indicate 
massifs where relevés were carried out (1 – Catria; 2 – Sibillini; 3 – Duchessa; 4 – Gran Sasso; 5 – Majella; 6 – Simbruini-Ernici; 7 – Sirente-
Velino; 8 – Matese; 9 – Pollino). Projected vectors on the ordination diagram refer to altitude, slope angle, light intensity (L), air temperature 
(T), continentality (C), soil moisture (M), soil reaction (R), and soil nutrients (N). Asy tri – Asyneuma trichocalycinum; Car enn – Cardamine 
enneaphyllos; Gal odo – Galium odoratum.
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Trait Trait state PCA axis Tau estimate

Leaf phenology

Persistent green leaves
1 -0.19***

2 0.02n.s.

Spring green leaves
1 0.11n.s.

2 0.17**

Summer green leaves
1 -0.07n.s.

2 -0.05n.s.

Overwintering green leaves
1 -0.04n.s.

2 -0.06n.s.

Leafless
1 -0.07n.s.

2 -0.08n.s.

Pollen/spore dispersal system

Selfing
1 0.19***

2 -0.08n.s.

Wind
1 0.12*

2 -0.13***

Insects
1 -0.11*

2 0.20***

Storage organs

Tuber
1 -0.06n.s.

2 -0.11*

Rhizome
1 0.27***

2 0.14*

Secondary storage root
1 -0.12**

2 -0.15**

Turio
1 -0.05n.s.

2 -0.03n.s.

Bulb
1 0.03n.s.

2 -0.06n.s.

Tap root
1 -0.09n.s.

2 -0.02n.s.

Vegetative propagation

Rhizome
1 0.46***

2 0.13*

Runner
1 -0.32***

2 0.17**

Bulbil
1 0.35***

2 -0.07n.s.

Bulb
1 0.11*

2 -0.11*

Turio
1 -0.08n.s.

2 -0.03n.s.

Root splitter
1 0.01n.s.

2 -0.05n.s.

Stem tuber
1 -0.06n.s.

2 -0.06n.s.

Root tuber
1 -0.08n.s.

2 -0.08n.s.

Root with adventitious buds
1 -0.11n.s.

2 -0.06n.s.

Root shoot
1 0.10n.s.

2 0.02n.s.

Table 2 – Kendall’s Tau estimates and significance levels of correlations between effect size for trait states community-weighted means and 
PCA axes 1 and 2 object scores. Significant results are shown in bold. n.s. p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Trait FD index PCA axis Tau estimate

Pollen/spore 
dispersal system

FDis
1 0.12*

2 -0.17**

Rao’s Q
1 0.11*

2 -0.18***

FDiv
1 -0.07n.s.

2 0.09n.s.

FRic
1 -0.07n.s.

2 -0.07n.s.

FEve
1 -0.08n.s.

2 -0.04n.s.

Leaf phenology

FDis
1 0.09n.s.

2 0.06n.s.

Rao’s Q
1 0.09n.s.

2 0.07n.s.

FDiv
1 -0.04n.s.

2 0.17**

FRic
1 -0.10n.s.

2 -0.07n.s.

FEve
1 -0.04n.s.

2 -0.11*

Storage organs

FDis
1 -0.14**

2 -0.10n.s.

Rao’s Q
1 -0.11*

2 -0.08n.s.

FDiv
1 -0.09n.s.

2 0.02n.s.

FRic
1 -0.21***

2 -0.03n.s.

FEve
1 -0.14*

2 -0.04n.s.

Vegetative 
propagation

FDis
1 -0.12***

2 -0.01n.s.

Rao’s Q
1 -0.14***

2 -0.08n.s.

FDiv
1 -0.13*

2 0.06n.s.

FRic
1 -0.42***

2 0.01n.s.

FEve
1 -0.04n.s.

2 -0.02n.s.

Table 3 – Kendall’s Tau estimates and significance levels of 
correlations between effect sizes, calculated for functional richness 
(FRic), functional dispersion (FDis), Rao’s quadratic entropy (Rao’s 
Q), functional divergence (FDiv), and functional evenness (FEve), 
and PCA axes 1 and 2 object scores. Significant results are shown in 
bold. n.s. p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

floristic point of view, Asyneuma trichocalycinum, endemic to 
southern Italy, was typical of the southern Tyrrhenian section 
(fig. 2) (Di Pietro 2009; Bartolucci et al. 2018). Plots of the 
northern and central sectors of the study area (groups 1 to 8, 
fig. 1) shared species that are common in central Apennine 
beech forests, but absent from the southernmost sector of the 
study area (group 9, fig. 1), such as Anemone ranunculoides, 
Cardamine enneaphyllos, Cardamine kitaibelii, Carex 
pilosa, Doronicum columnae, Geranium nodosum, Lilium 
martagon, Luzula sylvatica subsp. sylvatica, Polygonatum 
verticillatum, and Pyrola minor (Di Pietro 2009; Bartolucci 
et al. 2018) (see supplementary file 2).

The not significant relation between EIVs and the PC1 
and PC2 object scores, pointed out that the ecological 
conditions in the understory were substantially homogeneous 
throughout the considered geographical range. Only altitude 
showed a significant relation with both PCA axes 1 and 2. 
Our results are consistent with Di Pietro (2009), who stated 
that in the Apennine beech woodlands both biogeographic 
history and environmental factors shape the species pool 
and have different importance according to the geographic 
areas, and that biogeographical factors and altitude play 
a major role in southern Apennine. This observation is in 
line with Willner et al. (2017), who failed to find a formal 
classification of European basiphylic beech forests based on 
either geographical or ecological criteria.

Variations in the herb layer functional structure 

From a functional point of view, toward negative values of 
PCA axis 1 (fig. 2), i.e. the southernmost sector of our study 
area, corresponding to the southern Tyrrhenian section (Blasi 
et al. 2014), we detected the increase in abundance of species 
with runners (i.e. lateral shoots with long thin internodes and 
adventitious roots) and persistent green leaves, traits aimed 
to an efficient light and soil resource acquisition and space 
exploitation. Runners maximize the exploitation of space and 
soil resources, fostering the vegetative spreading (Klimeš 
2008). Leaf types with a long lifespan can photosynthesize 
throughout the year without seasonal photosynthetic tissue 
regrowth (Grime 2001), maximizing photosynthetic returns 
where stress is not particularly severe (Chabot & Hicks 
1982).

In contrast, toward positive values of PCA axis 1 (fig. 
2), corresponding to the central and southern Apennine 
section (Blasi et al. 2014), we detected the establishment 
of plants equipped with rhizomes, bulbs, bulbils, and self-
pollination. Rhizomes (subterranean thickened shoots with 
short internodes and adventitious roots), which have both 
vegetative propagation and storage functions, can overcome 
the shortage of resources (Newell & Tramer 1978) by 
increasing the likelihood of establishment of individuals in 
harsh conditions (Grime et al. 1997). Bulbs, compressed 
storage part of the shoot, allow for fast reproductive 
cycles supported by the mobilization of reserves stored 
in belowground organs. The unpredictable negative inter-
annual climate fluctuations, typical of the sub-Mediterranean 
contexts, are likely the ecological filter that fosters the spread 
of species with bulbils (Bauert 1993). The need for a faster 
reproductive cycle (probably due the long-lasting winter 
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cold stress and the summer drought stress, which shorten 
the growing period of plants) may also account for the self-
pollination strategy (Gugerli 1998); indeed, it is known that 
the decreased length of the growing season promotes self-
compatibility or homogamy (Richards 1986; Körner 2003).

These results are in accordance with the general picture 
of trait variation observed in several studies of functional 
changes along environmental gradients (Grime 1977; Lavorel 
& Garnier 2002; Díaz et al. 2004; Lavorel et al. 2007). Our 
results also allow to infer that macro-climatic conditions 
were harsher northwards than in the southernmost part of 
the calcareous Apennine ridge, due to the more intense and 
longer-lasting period of winter cold stress.

As regards PCA axis 2, we found trends of CWM ESs 
that are consistent with those of PCA axis 1, such as the 
adaptations to cope with cold stress at the higher elevations 
(rhizomes and spring green leaves), while pollination by 
insects and runners, were not. These outcomes seem to 
highlight that a complex system of interacting stressors 
acts in shaping the functional composition (Scolastri et al. 
2017b). Altitude is related to other factors and interacts with 
latitude (Jump et al. 2009).

As far as functional diversity indices are concerned, we 
found that ES-FRic, ES-FDis, and ES-Rao’s Q of storage 
organs and vegetative propagation, and ES-FDiv for the 
latter trait, increased toward negative values of PCA axis 
1, i.e. toward the southernmost sector of the study area, in 
conditions of lower climatic stress intensity, fostering a 
better niche partitioning for the exploitation of space and 
soil resource niches and ensuring the coexistence of species 
with trait states associated with different modalities of 
resource acquisition, conservation and use (Tardella et al. 
2019). In contrast, these functional indices decreased toward 
positive values of PCA axis 1, i.e. in the central and southern 
Apennine section of the Apennine biogeographic Province. 
Probably the presence of more stressful conditions positively 
filtered traits linked specifically to resource retention 
strategies and vegetative spread (in particular, rhizomes, 
which function also as clonal growth organ), suggesting an 
increase of role of environmental filtering as driver of the 
community’s functional structure.

ESs of FDis and Rao’s Q regarding pollen/spore dispersal 
system increased toward positive values of PCA axis 1. 
This trend probably highlights that the differentiation of 
sexual reproduction strategies (see supplementary file 3) 
might be a suitable mechanism to cope with the shortening 
of the reproductive period and with the possible reduction 
of pollinators and density of plant populations due to stress 
intensification (Munoz et al. 2016).

Instead, ES-FDis and ES-Rao’s Q for pollen/spore 
transfer types decreased with the increase of PCA axis 2 
scores, namely, towards higher elevations. This result is 
consistent with previous studies, which proved that the 
higher elevations cause a functional convergence, since 
stress intensification progressively selects strategies better 
adapted to facing harsher conditions (Huber et al. 2007; 
Körner 2007), but again this trend was not a general pattern 
for all traits in the study case. In fact, as far as leaf phenology 
is concerned, the positive correlation between FDiv and PCA 

axis 2 scores, indicates that in these conditions, species tend 
to have a more differentiated set of light acquisition strategies 
over time, ensuring a more efficient resource use and a better 
differentiation of the temporal niche (Mason et al. 2005), as 
suggested by the relative increase in cover of species with 
spring green leaves. Probably, their increase plays a role in 
causing the convergence of pollination types towards higher 
elevations, as the 95% of these species are pollinated by 
insects (see supplementary file 2).

Concerning the ES-FEve, our results offer experimental 
evidence to Mason et al. (2013) and Botta-Dukát & Czúcz 
(2016) observations, based on simulated data, that FEve is 
probably not able to detect changes in assembly processes. 
Also, previous studies have found little evidence for change 
in functional evenness in plant communities along ecological 
gradients (e.g. Mason et al. 2012) and that its behaviour 
might be difficult to support with biological interpretations 
(de Bello et al. 2013).

In summary, we found evidence of functional 
convergence toward the central and southern Apennine 
section (Temperate Division, Apennine Province) at least 
for traits related to resource conservation strategies and 
vegetative propagation, probably due to increase in the 
strength of environmental filtering (Götzenberger et al. 
2016). We did not find any evidence of environmental 
filtering in the considered geographic range for pollen/spore 
dispersal and leaf phenology, the latter showing divergence 
toward the highest elevations. Our results also suggest that 
the environmental filtering on community’s functional 
structure can depend on the trait considered (Grime 2006; 
Mason et al. 2011; de Bello et al. 2013), partly confirming the 
concept that environmental filtering in stressed communities 
should cause lower FD (Mouchet et al. 2010). Moreover, it is 
remarkable that opposite FD trends co-occur in the species 
pool, determining different responses from different traits. 
It follows that averaging FD across different traits may 
hide meaningful ecological patterns, resulting in a loss of 
information. This aspect deserves further in-depth analysis, 
to elucidate the mechanisms by which these opposite trends 
act in shaping plant communities along environmental 
gradients. 

CONCLUSION

Our outcomes indicate that the studied geographical range, 
which underlies macro-climatic and biogeographic divisions 
and related stress variations, plays a weak but significant 
role in shaping the species composition and the functional 
structure of the studied community. However, our results are 
not completely in line with the Stress-Dominance Hypothesis, 
as only some traits responded by showing convergence 
(lower FD) in the conditions of higher stress, while others 
showed the opposite trend. Probably, the evaluated stress 
range could be too small (Ellenberg indicators did not 
show significant variations in our data set) to determine 
and highlight substantial and univocal variations. Thus, 
more in-depth research should be performed to test the 
Stress-Dominance Hypothesis for forest-floor species in the 
Mediterranean climatic context.
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Our results contribute to understanding the ecological 
meaning of the FD indices in a real ecosystem. However, 
this goal is still far from being extensively achieved. We 
find it necessary to understand the correlation among FD 
indices and factors not considered in this study, such as, 
disturbance regimes (Scolastri et al. 2017b), patch age and 
size (Campetella et al. 2016; Canullo et al. 2017), and post-
glacial recolonization processes (Di Pietro 2009).
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