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INTRODUCTION

Salt marsh plant communities are associated with a narrow 
range of soil topographic elevation and will be one of the 
first to feel the effects of predicted increase in sea level. The 
modern rates of sea level rise started at the beginning of the 
20th century (Gehrels & Woodworth 2013) and their first im-
pacts on coastal areas and vegetation have already been re-
corded (Donnelly & Bertness 2001). In many cases under ex-
isting inundation conditions, below-ground production and 
induction of sedimentation through baffling by above-ground 
macrophyte biomass are declining as sea level is rising (Voss 
et al. 2013). Thus, the reduced macrophyte productivity and 

capacity even to retain existing marsh surface elevations 
reflect failure in accretion feed-back processes, threatening 
the persistence of salt marshes (Voss et al. 2013). Most of 
the predictions of the response to sea level rise focus on the 
habitat and landscape scales (Vestergaard 1997, Stralberg et 
al. 2011, DeLaune & White 2012, Rogers et al. 2012), while 
responses at the community scale are less explored (Tolley & 
Christian 1999, Sharpe & Baldwin 2012), and require much 
more assessment and consideration for the planning of the 
future coastal areas.

The extent to which the sea level rise may affect coastal 
plant communities depends on the magnitude of sea level 
rise. According to estimates from the Intergovernmental 
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Background and aims – Salt marsh plant communities will be among the first to be exposed to the 
predicted increase in sea level and to the associated environmental changes. The objectives of this study 
were to evaluate the influence of three major environmental variables (elevation above sea level, distance 
from the sea, vegetation age) on vegetation diversity in salt marshes and to predict vegetation changes in 
the year 2100 according to different scenarios of sea level rise.
Methods – Plant communities were sampled in 1257 plots of 1 m2 distributed along transects randomly 
positioned perpendicular to the shoreline in the Bay of Somme (Picardy, France). Digital elevation model 
data were used to determine the plot elevation and the distance between the plots and the shoreline. 
Three centuries of changes in the vegetation cover were reconstructed using historical maps and aerial 
photographs to estimate the vegetation age. We investigated the relationships between elevation above sea 
level, distance from the sea, vegetation age and vegetation richness and composition using mixed models. 
Predictive models of species richness and cover of dominant halophytes were built using the parameter 
estimates of the previous mixed models and the projections of the explanatory variables in 2100 according 
to the different sea level scenarios from +0.5 m to +2.5 m.
Key results – Mixed models showed that species richness mainly increased with vegetation age. The 
halophytes exhibited contrasting patterns along elevation and age gradients. Sedimentation rates may 
counteract the sea level rise until the latter reaches a critical rate that drowns the marsh vegetation.
Conclusions – Because the proportions of ancient vegetation will be higher in the bay, mean plant species 
richness may be higher in predicted communities in 2100 than in recently sampled communities.
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Panel on Climate Change (IPCC), global warming until 
2100 may cause a global mean sea level rise of 0.18–0.59 m 
(Meehl et al. 2007). Nevertheless, the accuracy of the climate 
models is limited by the complex and multifactorial nature 
of the causes of sea-level rise (Cazenave et al. 2008, 2009, 
Nicholls & Cazenave 2010) and discrepancies (up to 80% of 
error) may appear between the observed data and the projec-
tions (Cazenave & Llovel 2010, Zecca & Chiari 2012). Since 
then, these predictions have been reworked (IPCC 2013) 
and improved to better capture the contributions due to fast 
ice dynamics (Pfeffer et al. 2008) or integrate observed sea-
level trends in semi-empirical models (Vermeer & Rahmstorf 
2009). Larger changes (Rahmstorf 2007, Vermeer & Rahm-
storf 2009, Katsman et al. 2011, Pelling et al. 2013) and ac-
celerations of sea level rise may be expected throughout the 
21st century (Nicholls & Cazenave 2010, Church & White 
2011, Woodworth et al. 2011), with projections ranging up 
to c. +2 m because of acceleration of global warming and 
possible role of the Greenland and West Antarctic ice sheets 
and regional factors. Furthermore, seasonally and spatially 
non-uniform variations in sea level rise are likely to occur, 
increasing the level of the sea locally over the globally pre-
dicted mean values (Milne et al. 2009, Pickering et al. 2012). 
In the southern North Sea, the sea level rise projections for 
2200 range up to c. +3.5 m (Katsman et al. 2011). Regarding 
the underestimation of the sea level rise in the past models 
and projections and the plausible appearance of new sources 
of climate warming (Gorham 1991, DeConto et al. 2012, Fan 
et al. 2013, Gong et al. 2013), extreme scenarios cannot be 
excluded. These extreme scenarios are also valuable when 
the sea level rise combines with extreme climatic events, 
such as hurricane surge and waves (Smith et al. 2010). Many 
recent studies propose adaptation strategies in the planning 
for the future coastal communities based on the revised val-
ues of the sea level rise of 1 m, 2 m or even 5 m by the end of 
the century (Parker et al. 2013). Other site specific conditions 
such as enhanced sediment accretion (Wolanski et al. 2004) 
or accelerated erosion caused by human activities (Castillo et 
al. 2000) or related to climate change, i.e. sea-level rise and 
increased wind and wave activity (Kim et al. 2011), may be 
also implied in the response of estuarine systems to sea level 
rise (Pont et al. 2002) and thus, local topographic variables 
are needed to ameliorate predictions in a given site.

Marsh elevation above the sea level and distance from 
the shoreline are the two vertical and horizontal topograph-
ic variables that will be directly modified by sea level rise. 
These two variables are also related to numerous environ-
mental determinants of vegetation composition: frequency 
and duration of inundation, soil drainage, salinity and nutri-
ents, mechanical erosion by sea waves (Vestergaard 1997, 
Khedr 1998, Silvestri et al. 2005). Elevation and distance 
from the shoreline are not necessarily correlated (Silvestri 
et al. 2005): both micro- and macro-cliffs are commonly 
found very close to the shoreline along the European coast 
(see the Normandy and Picardy coasts), while continental 
marshes can develop under the sea level because protected 
by natural or engineered coastal barriers (see the Netherland 
coasts). In the next decades, most of salt marsh areas will 
be exposed to increasing frequency of inundation, salt water 
intrusion, soil waterlogging, hypoxia and mechanical erosion 

by waves. These new conditions may modify the survival, 
growth, reproduction and competitive ability of halophytes 
(Tolley & Christian 1999, Egan & Ungar 2000, Huckle et 
al. 2000, Woo & Takekawa 2012, Alhdad et al. 2013), may 
cause a displacement of vegetation zones up-estuary and up 
the intertidal platform (Vestergaard 1997) or may produce a 
complex mix of changes in the plant distribution (Watson & 
Byrne 2009) and, finally, may alter biochemical cycles and 
ecosystem processes and services in the estuarine floodplain 
(Miller et al. 2001, Chmura 2013, DeLaune & White 2012).

Historical dimension is usually forgotten in the models 
predicting the effects of sea level rise on the coastal vegeta-
tion, although the age of the vegetation has been recently 
evoked as a major factor influencing the spatio-temporal dy-
namics of the salt marsh plants (Veeneklaas et al. 2013). A 
new vegetation patch installed in 2010 will be 90 years older 
in 2100. This age effect on vegetation diversity is almost 
never considered in models and rarely disentangled from 
other environmental factors such as distance from the sea or 
elevation. Historical maps and the written history of distur-
bance events represent effective tools to trace estuarine veg-
etation changes (Civco et al. 1986, Dijkema 1987, Bromberg 
& Bertness 2005, Godet & Thomas 2013) and to explain 
current species diversity (Coverdale et al. 2013). The spe-
cies–time relationship (Rosenzweig 1995) may be applied to 
estuarine floodplains in which recent and ancient vegetation 
patches coexist in a dendritic landscape mosaic constantly 
remodelled by the influence of the sea and human activities. 
In this system, the older vegetation patches had more time 
to accumulate species than the recent ones. The number of 
species may also increase over time because habitat quality 
is likely to change as the salt marsh ages; soil drainage and 
nutrients increase, while salinity decreases with age (Bert-
ness & Ellison 1987, Olff et al. 1997, Houwing et al. 1999, 
Veeneklaas et al. 2013). In such environmental conditions, 
late successional communities will develop and host a higher 
number of generalist and salt-intolerant species from terres-
trial environments and continental wetlands (Chabrerie et al. 
2001, Géhu & Wattez 2007) and are expected to be richer 
than recent communities harbouring a small set of pioneer 
halophytes.

 Our aim is (1) to test the effect of three important 
environmental variables (elevation above sea level, distance 
from sea and vegetation age) on salt marsh vegetation rich-
ness, composition and biomass and (2) to predict vegetation 
changes in 2100 according to the different scenarios of sea 
level rise.

For this, we used a recent large data set collected in the 
Bay of Somme (France), a medium-sized estuary preserved 
from the development of industrial areas and harbour facili-
ties, and used mixed models to test the effects of environ-
mental and historical variables on plant communities. Then, 
we extracted the parameter estimates of these mixed models 
and used the projections of sea level rise and vegetation age 
values in 2100 to build new predictive models. We hypoth-
esize that sea level rise will reduce the total salt marsh area 
but will increase the proportion of ancient vegetation in the 
bay and, consequently, the local number of species.
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MATERIAL AND METHODS

Study site

Located in the Eastern Channel between Marquenterre/Le 
Crotoy in the North and Saint-Valery-Sur-Somme/La Pointe 
du Hourdel in the South, the Bay of Somme (50.20°N 1.62°E) 
is the second largest estuarine system in Northern France. 
This macrotidal estuary has a tidal range of 9.79 m and re-
ceives low fresh water input mainly from the Somme River 
(30 m3.s-1). The other river (Maye) and smaller channels have 
low runoffs and thus the marine influence dominates the site 
(Rybarczyk & Elkaïm 2003). The salt marsh vegetation of 
the Bay of Somme covers 1909 ha. Due to low inputs from 
the river and strong hydrodynamic conditions at the mouth 
of the bay, the salt marshes have been largely patterned by 
natural flooding, tidal wave events and by sheep grazing 
and plant successions. Further, the human activities such as 
embankments, building of seawalls, levees and dykes, have 
also influenced the spatial dynamics of the bay (Lefèvre & 
Regrain 1977) at least over the last four centuries. Naviga-
tion ways are sometimes locally dredged to reduce silting in 
the bay but this management method systematically leads to 
very short-term and temporary results. The landscape of the 
bay currently forms a mosaic of vegetation patches varying 
in age which are included in a dendritic network of chan-

nels (fig. 1). The zonation of the vegetation is typical of a 
salt marsh ecosystem but is locally altered by the presence 
of ponds established by hunters. The most frequent species 
are Elymus athericus (35.9% of the plots), Halimione por-
tulacoides (31.7%), Puccinellia maritima (31.6%) and Aster 
tripolium (30.4%). The bay is used for traditional purposes: 
harvesting of edible plants, extensive sheep grazing, hunting, 
cockle and inshore fishing and touristic activities (Meirland 
et al. 2013). Four main plants are collected in the bay, Sali-
cornia fragilis, Aster tripolium, Halimione portulacoides and 
Suaeda maritima, and are marketed fresh for cooking in the 
Picardy and Normandy regions or transformed and exported.

Sampling

The vegetation was sampled in 1257 plots of 1 m2 distrib-
uted in a total of 19 transects positioned perpendicular to the 
shoreline to take into account the vegetation zonation typical 
of salt marshes (Emery et al. 2001, Costa et al. 2003). Tran-
sects were spaced at a mean distance of 605 m and plots by a 
distance of 30 m along transects. In each plot, the cover of all 
vascular plant species and species richness were measured in 
July and August from 2009 to 2012. Plots with late flowering 
plants (Salicornia and Atriplex genus) were visited a second 
time in September to identify the species.

Figure 1 – Vegetation map of the bay of Somme showing the dates of vegetation formation extracted from historical documents and aerial 
images.
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Figure 2 – Vegetation maps of the bay of Somme with scenarios of sea level rise from +0.5 m to +2.5 m in 2100. The areas of vegetation 
are noted above each map.

To evaluate the effects of local conditions on plant com-
munities, three main environmental variables (elevation 
above sea level, distance from the sea and vegetation age) 
were selected because they are major determinants of plant 
diversity in salt marsh systems and/or because they will 
be influenced by sea level rise. The elevation of each plot 
above the sea (variable noted ‘ALTISEA’) was extracted 

from the official Digital Elevation Model (DEM) ‘RGE® 
ALTI’ of the French National Geography Institute (IGN 
2012; LIDAR data, available at http://professionnels.ign.fr/
rgealti). The DEM was integrated in a Geographic Informa-
tion System (GIS; ArcGis® v.10.1, ESRI). The elevation of 
the shoreline was defined by the lowest elevation of the sea-
vegetation contact point recorded in our data set. This lowest  

http://professionnels.ign.fr/rgealti
http://professionnels.ign.fr/rgealti
http://professionnels.ign.fr/rgealti
http://professionnels.ign.fr/rgealti
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sea-vegetation contact point was at 3.25 m above the funda-
mental landmark in the legal altimetry system, and at 7.64 
m above the local hydrographic zero measured at Cayeux-
sur-Mer in the Bay of Somme (SHOM 2012). The distance 
between each plot and the nearest shoreline (variable noted 
‘DISTSEA’) was calculated using the ‘NEAR’ tool in the 
GIS.

To evaluate the age of vegetation formations in the 
Somme Bay, changes in vegetation cover were reconstructed 
in the GIS using historical maps: La Bretonnière, Méchain 
and Oeuillio des Bruyères’s maps (drawn c. 1776), French 
military ‘Etat Major’ maps (c. 1826) and administrative 
‘Ponts et Chaussées’ maps (c. 1875), and aerial photographs 
(1920, 1971, 1981, 1991) and field surveys (2006; fig. 1). 
The vegetation cover was available on these documents. At 
each plot, vegetation age (‘AGE’) was estimated by calculat-
ing the time difference between the plot sampling date and 
the map on which the vegetation was first represented.

At a larger scale, to estimate vegetation biomass around 
each plot, we calculated a normalized difference vegeta-
tion index (NDVI) generated from satellite data of a Land-
sat GLS scene of June 2009 (USGS-NASA; pixel size: 30 
x 30 m; available at http://earthexplorer.usgs.gov/). NDVI 
is commonly used as an estimator of vegetation production 
especially on coastal marsh landscapes (see Chabrerie et al. 
2001 for the Seine estuary) characterized by low topograph-
ic contrasts. This biomass could be influenced by sea level 
rise through the modification of the shoreline and dominant 
plants in communities.

Maps of the vegetation cover in the Bay of Somme in 
2100 were produced in GIS for five sea level rise scenarios 
by increasing the sea level by +0.5 m, +1.0 m, +1.5m, +2.0 
m and +2.5 m (fig. 2). In these scenarios, the accretion of the 
marsh platform was included by calculating the height of sed-
iment input that occurred in the bay during the last decades, 
as following: ACCRETION = (meanALTI2006 - meanAL-
TI1920) / (2006 - 1920), where meanALTI2006 and meanAL-
TI1920 are the mean elevations of the marsh areas which were 
first represented on the maps of 2006 (n = 2 919 665 pixels 
of 1 m2) and 1920 (n = 3 997 617 pixels of 1 m2), and 2006 
and 1920 are the dates of the respective maps. We found an 
average accretion of 1.36 cm.year-1 over this period, which 
is similar to the range of measures recorded by other studies 
(between 1 and 1.8 cm.year-1) in the Bay of Somme and in its 
vicinity (Badaire et al. 1994, Marion 2007). The predictive 
maps were used to calculate the elevation of each plot above 
the sea level (‘ALTISEA2100’) and the distance between each 
plot and the nearest shoreline (‘DISTSEA2100’) in 2100 ac-
cording to the different scenarios. The age of the vegetation 
formations in 2100 was calculated for each plot as following: 
AGE2100 = AGEsampling year + (2100 - sampling year). The other 
natural or anthropogenic events, such as storms or construc-
tions of ditches and dikes in the bay, may modify the inter-
tidal platform in the next century. These scenarios were not 
considered here because hardly predictable, related to ran-
dom processes or site-specific policies.

Nomenclature

The nomenclature of the taxa follows Lambinon et al. (2004), 
and Lahondère (2004) for the genus Salicornia.

Data analyses

First, the effects of elevation above sea level (ALTISEA), 
distance from the sea (DISTSEA) and vegetation forma-
tion age (AGE) on community species richness (SR) and 
biomass (NDVI) and on the cover of dominant halophytes 
(Aster tripolium, Elymus athericus, Festuca rubra subsp. 
litoralis, Halimione portulacoides, Puccinellia maritima and 
Salicornia fragilis) were tested using mixed models. These 
species were chosen because they dominate the species-poor 
communities of the bay and explain the major compositional 
changes. They may also exhibit contrasting patterns along 
environmental gradients. In the models, the transect was in-
troduced as a random effect term to account for the autocor-
relation between the plots of a transect. All models were built 
using SPSS (version 17.0, IBM Corp., Somers, NY, US).

Second, using the approach of Duckworth et al. (2000), 
prediction models of species richness, biomass and cover 
of dominant halophytes were built using the parameter esti-
mates of the previous mixed models and the values of the ex-
planatory variables in 2100 (ALTISEA2100, DISTSEA2100 and 
AGE2100). For example, the species richness in a sampling 
plot predicted with a sea level rise of +1.5 m in 2100 is cal-
culated as following: SR2100,+1.5m = Amodel × ALTISEA2100,+1.5m 
+ Bmodel × DISTSEA2100,+1.5m + Cmodel × AGE2100 + Zmodel, where 
Amodel, Bmodel, Cmodel are the parameter estimates of the explan-
atory variables ALTISEA, DISTSEA and AGE and Zmodel is 
the intercept in the mixed models. For each of the sea level 
scenarios, mean predicted values of SR, NDVI and species 
covers were calculated in the plots remaining above the sea 
level.

RESULTS

The study area (fig. 1) showed a complex network of chan-
nels in which vegetation patches varying in age and shape 
are embedded. The history of vegetation colonization was 
also complex because patterned by centuries of sedimenta-
tion and erosion processes. Although very recent vegetation 
patches (appeared in 2006) were close to the shoreline, old 
ones were found both very far and very close to the shoreline 
(see the dark grey patches in the map of fig. 1). The high pro-
portion of vegetation installed during the last century could 
be a response to increasing human activities (embankment, 
sediment deposit from continental agricultural landscapes 
and carried by the river, …) and to the natural erosion of old 
patches by the sea for several centuries. Finally, the bay of 
Somme was a typically changing landscape providing a di-
versity of habitats for plants and animals.

A total of 47 taxa of vascular plants were present in 
the 1257 plots; 66% of which were halophytes (Artemisia 
mari tima, Aster tripolium, Bolboschoenus maritimus, Ely-
mus athericus, Glaux maritima, Halimione portulacoides, 
Limonium vulgare, Puccinellia maritima, Salicornia spp., 
Spartina anglica, Spergularia marina, Suaeda maritima, 

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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Triglochin maritima). The mean (± SE) species richness was 
3.03 (±0.05) per plot.

Mixed models (table 1) showed that species richness 
increased primarily with vegetation age and, to a lesser de-
gree, with distance from the sea. Biomass estimated by 
NDVI increased with elevation and age and decreased with 
distance from the sea. Halophytes exhibited highly contrast-

ing patterns along elevation, distance from the sea and age 
gradients. Elevation above sea level was a significant ex-
planatory variable in all the species models, influencing As-
ter tri polium, Puccinellia maritima and Salicornia fragilis 
negatively and, Elymus athericus, Festuca rubra subsp. lito-
ralis and Halimione portulacoides positively. Distance from 
the sea influenced Festuca rubra subsp. litoralis, Halimione 

Dependent variables Explanatory variables Par. est.1 S.E.2 D.F.3 t-value P-value4

SR Model constant 2.7687 0.1896 146.91 14.60 < 0.0001
ALTISEA -0.1397 0.1189 964.83 -1.17 0.2403
DISTSEA 0.0006 0.0003 1225.58 2.26 0.0239
AGE 0.0064 0.0014 1252.17 4.65 < 0.0001

NDVI Model constant 0.2679 0.0211 33.67 12.72 < 0.0001
ALTISEA 0.0735 0.0080 1247.14 9.17 < 0.0001
DISTSEA -0.0001 0.00002 1242.65 -4.80 < 0.0001
AGE 0.0006 0.0001 1242.08 7.02 < 0.0001

Aster tripolium Model constant 16.1450 1.5198 57.11 10.62 < 0.0001
ALTISEA -6.5909 0.7826 1251.19 -8.42 < 0.0001
DISTSEA -0.0023 0.0017 1250.75 -1.36 0.1737
AGE -0.0153 0.0089 1247.82 -1.72 0.0857

Elymus athericus Model constant -31.2530 3.5895 144.50 -8.71 < 0.0001
ALTISEA 26.0794 2.1481 1172.23 12.14 < 0.0001
DISTSEA 0.0197 0.0047 1248.99 4.22 < 0.0001
AGE 0.0142 0.0246 1252.86 0.58 0.5645

Festuca rubra subsp. litoralis Model constant -8.5604 3.3007 181.16 -2.59 0.0103
ALTISEA 13.5278 1.9691 1195.23 6.87 < 0.0001
DISTSEA -0.0191 0.0043 1250.33 -4.49 < 0.0001
AGE 0.0330 0.0226 1252.86 1.46 0.1446

Halimione portulacoides Model constant 19.6154 5.2838 57.86 3.71 0.0005
ALTISEA 9.9763 2.5564 1252.99 3.90 0.0001
DISTSEA -0.0236 0.0055 1249.14 -4.28 < 0.0001
AGE -0.1794 0.0291 1247.23 -6.17 < 0.0001

Puccinellia maritima Model constant 20.7962 3.9242 130.72 5.30 < 0.0001
ALTISEA -4.6215 2.2956 1205.92 -2.01 0.0443
DISTSEA -0.0099 0.0050 1251.65 -2.00 0.0457
AGE 0.0823 0.0263 1252.44 3.13 0.0018

Salicornia fragilis Model constant 13.2773 1.3324 63.35 9.96 < 0.0001
ALTISEA -6.4527 0.6461 1253.00 -9.99 < 0.0001
DISTSEA 0.0034 0.0014 1249.54 2.44 0.0149
AGE -0.0091 0.0073 1247.77 -1.24 0.2139

Table 1 – Effects of elevation, distance from the sea, and vegetation age on species richness, NDVI and species covers.
Transect was used as a random factor in mixed models (n = 1257 sampling plots). 1: parameter estimate; 2: standard error; 3: degrees of 
freedom. Dependent variables: SR: species richness in plots; NDVI: Normalized Difference Vegetation Index measured in 2009; species 
covers (%) measured in plots for Aster tripolium, Elymus athericus, Festuca rubra subsp. litoralis, Halimione portulacoides, Puccinellia 
maritima and Salicornia fragilis. Explanatory variables: ALTISEA: elevation above the sea level (m), DISTSEA: distance from the shore 
line; AGE: vegetation age extracted from historical maps and aerial images.
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portulacoides and Puccinellia maritima negatively and, Ely-
mus athericus and Salicornia fragilis positively. Vegetation 
age (AGE) was the most significant explanatory variable in 
two species models and influenced Halimione portulacoides 
negatively and Puccinellia maritima positively.

The area of vegetation in the bay increased in the +0.5 
m and +1.0 m sea-level rise scenarios (fig. 2B & C), indicat-
ing that the rate of accretion would be higher than the rate 
of sea-level rise. Beyond this range of sea-level rise (> +1.5 
m), the sea-level rise is no longer countered by accretion 
and vegetation area strongly decreased as the extent of sea-
level rise increased (fig. 2). As the sea level rises by +2.0 m 
and +2.5 m, 7.9% and 18.3% of the vegetation area would 
be lost, respectively. Above a threshold +1.5 m of sea level 
rise, there would be a sharp decline in the number of sam-
pling plots remaining above the sea level (fig. 3A). Among 
the 1257 sampling plots, only 1076 and 859 of them would 
remain above the sea level after a rise of +2.5 m and +3.0 m, 
respectively. Beyond the threshold of +1.5 m, the mean ele-
vation of the plots above the sea-level (fig. 3B) and the mean 
distance between the plots and the shoreline (fig. 3C) would 
decline with increasing sea-level. With rising sea-level, the 
proportions of ancient vegetation would increase in the bay 
(fig. 3D), as the most recent areas and pioneer habitats are 
mostly close to the shoreline (fig. 1) and, thus, would be the 
first to be covered by the sea.

In the prediction models, mean plant species richness 
would increase (fig. 4A) and mean primary production es-
timated by NDVI would first increase and then decline (fig. 
4B) with increasing sea-level rise scenarios. The covers of 
species abundant in the lower marsh areas (Aster tripolium, 
Salicornia fragilis; fig. 4C & H) would decrease in the low-
est scenarios (+0.5 m and +1.0 m) and would increase in the 
highest ones (> +1.5 m). Species from higher marsh areas 
(Elymus athericus, Festuca rubra subsp. litoralis) would 
show opposing variation patterns (fig. 4D & H). Species as-
sociated with ancient habitats (Puccinellia maritima; fig. 4G) 
would increase in cover, while species disadvantaged in the 
oldest marshes (Halimione portulacoides; fig. 4F) would de-
crease.

DISCUSSION

Historical factors matter in community prediction 
models

The time elapsed since the salt marsh formation is the most 
important factor in explaining species richness. We found a 
positive influence of vegetation age on species richness indi-
cating that more species will be able to survive the environ-
mental conditions that progressively develop as the vegeta-
tion ages. This is consistent with the species accumulation 
predicted by the species-time relationship (Rosenzweig 

Figure 3 – Mean values (± S.E.) of independent variables with different sea level rise scenarios in 2100: A, number of plots remaining above 
the sea level with different sea level rise scenarios; B, mean height of plots above the sea level (m); C, mean distance between plots and shore 
line; D, mean vegetation age (years) among plots remaining above the sea level in 2100 with different sea level rise scenarios. Measured: 
mean variable value from collected data; +0.5m to +2.5m: mean variable value in scenarios of sea level rise from +0.5 m to +2.5 m.
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Figure 4 – Predictions of mean values (± S.E.) of dependant variables with different sea level rise scenarios in 2100: A, mean values (± 
S.E.) of species richness; B, mean values (± S.E.) of NDVI: Normalized Difference Vegetation Index; C–H, mean cover values (± S.E.) of 
Aster tripolium, Elymus athericus, Festuca rubra subsp. litoralis, Halimione portulacoides, Puccinellia maritima and Salicornia fragilis in 
plots. Measured: mean variable value from collected data; +0.5m to +2.5m: mean variable value in scenarios of sea level rise from +0.5 m 
to +2.5 m.
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1995) and with the observations made in other estuaries 
along the English Channel; where during plant successions, 
species-poor pioneer communities composed of a few halo-
phyte specialists are progressively replaced by mixed com-
munities in which both sub-halophytes and generalists from 
terrestrial habitats and continental wetlands coexist (Le Neu-
veu 1984, Chabrerie et al. 2001, Géhu & Wattez 2007). The 
species pool concept (Pärtel et al. 1996, Zobel et al. 1998) 
has been successfully applied to the salt marsh environments 
(Wolters et al. 2008), where the local diversity of a given site 
is limited by the dispersal ability of a regional set of spe-
cies and by their ability to grow at a site. The sets of species 
that are able to develop in recent and ancient areas are not 
equivalent. The large species pool (combining salt-tolerant 
species and continental species) which are able to populate 
the late successional stages may explain why the gain of spe-
cies through accumulation with time in ancient vegetation 
patches is superior to the loss of species with time by com-
petitive exclusion of the few pioneer halophytes.

In the mixed model of species richness, the effect of the 
age of the saltmarsh is significant (p < 0.0001), while the 
effects of elevation is insignificant (p = 0.2403) and the in-
fluence of distance from shoreline is low (p = 0.0239). This 
suggests that, even while considering sea level rise, the age 
of the vegetation patches remaining above the sea level is of 
the greatest importance for predictions of species richness. 
In extreme scenarios (> +1.5 m) proposed here for 2100, the 
proportions of plots with ancient vegetation increases as the 
sea level rises (fig. 3B) because the very recent and flat ar-
eas of pioneer vegetation close to the coastline are among 
the first to be covered by the sea in the bay landscape. As 
age matters more than distance from the sea in local diver-
sity predictions, pioneer species characteristic of early suc-
cessional stages would not necessarily be able to replace, or 
at least to integrate the communities of the very latest suc-
cessional stages of the oldest patches, even if the sea level 
rises. This is consistent with many studies which showed an 
asymmetric competition between species of different succes-
sional stages, where the late successional stage species limit 
the development of the species of the earlier stage even if the 
latter are able to grow along the whole salinity gradient of a 
given marsh (Huckle et al. 2000, Egan & Ungar 2001, Crain 
et al. 2004, Pennings et al. 2005).

NDVI exhibited an initial increase of the plant produc-
tion at +0.5 m compared to the measured present-day val-
ues and then demonstrated subsequent sharp declines of this 
primary production with increasing sea levels (fig. 4B). The 
same variation pattern was found by Voss et al. (2013) and 
interpreted as an anticipated response of marsh macrophytes 
to inundation caused by sea level rise. Previous studies have 
shown that sea level rise may promote plant production in 
some conditions (Morris et al. 2002). The low biomass es-
timated by NDVI in the most remote areas of the coast (ta-
ble 1) may be also due to several factors, among which the 
increase in grazing pressure or in harvesting frequency of ed-
ible plants, soil drainage or dominance of prostrate or short 
species (Puccinellia maritima; table 1 and fig. 4). The initial 
increase of primary production at +0.5 m may also be the re-
sult of an age effect, i.e. the effect of age difference between 
the year of sampling and the year 2100. Salt marsh soils be-

come enriched with carbon (Choi et al. 2001) and nutrients 
(Olff et al. 1997) with age; and this may stimulate ecosystem 
productivity until sea-level rise reaches a critical rate that 
submerges the marsh vegetation (Mudd et al. 2009). In this 
context, physical effects of waves should also increase and 
affect plant biomass by uprooting of plants. The interactions 
between sedimentation rates and sea-level rise could also 
influence future primary production patterns, but the magni-
tude of the effect of these potentially interacting factors is 
difficult to evaluate in such estuarine systems characterized 
by a high variability of environmental conditions. In contrast 
to species richness, primary production steeply declines from 
+0.5 m to +2.5 m as the NDVI is mainly negatively influ-
enced by elevation above the sea level (table 1). This result is 
consistent with many studies which showed a decline in the 
biomass of halophytes with increase in the sea level (Pont 
et al. 2002, Woo & Takekawa 2012, Alhdad et al. 2013). In 
the next decades, these sharp variations in primary produc-
tion may alter or stimulate many ecosystem services in the 
bay, such as primary biomass inputs in the trophic network 
(Adam 1990) and carbon sequestration (Mudd et al. 2009). 
Above a threshold of +1.5 m, the rise of the sea-level is no 
longer countered by accretion and some edible plant species 
may increase their production (Aster tripolium, Salicornia 
fragilis; fig. 4C & H) while other species, marketed or used 
for sheep diet (see Halimione portulacoides, fig. 4F; Festuca 
rubra subsp. litoralis, fig. 4E) may decrease.

Contrasting responses of species to sea level rise

In the lowest prediction models (< 1.5 m), the effects of sedi-
mentation accumulation is stronger than the effects of sea-
level rise. Consequently, species of upper marshes (Festuca 
rubra subsp. litoralis and Elymus athericus) may increase 
and probably over-compete and replace pioneer halophytes 
(Aster tripolium and Salicornia fragilis, fig. 4).

Beyond a threshold of +1.5 m, a part of the marsh vegeta-
tion is submerged by the sea, the mean height of the plots 
above the sea-level and the distance between the plots and 
the shoreline decreased from optimistic to pessimistic sce-
narios (fig. 3). Consequently, a longer shoreline and a more 
complex sea-vegetation interface develops in the bay with 
rising sea-level (fig. 2D–F) favouring the development of 
pioneer halophytes in low elevation areas close to the coast 
(Aster tripolium, Puccinellia maritima and Salicornia fra-
gilis, fig. 4). On the contrary, species of medium and upper 
marshes (Halimione portulacoides, Festuca rubra subsp. lit-
oralis) and remote salt marsh-continental ecotones (Elymus 
athericus) may decline. As the mean vegetation age increas-
es in the bay with increasing sea-level (fig. 3D), Halimione 
portulacoides will be disadvantaged while Puccinellia mar-
itima will be promoted by future changes. The six studied 
species showed contrasting responses to elevation, distance 
from shoreline and age gradients (table 1) indicating that a 
species-level analysis is necessary to understand the effects 
of sea level rise on vegetation.

The positive effect of increasing sea level rise on the 
Salicornia fragilis population (fig. 4H) is consistent with the 
results of previous studies and may be due to the increase in 
flooding events and salinity at the bay. A higher inundation is 
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known to increase the survival of the Sarcocornia seedlings 
during the growing season and intermediate levels of inun-
dation (50% to 75%) increase the height of the adults at the 
end of the growing season (Woo & Takekawa 2012). Conse-
quently, individuals from the lower marsh areas close to the 
shoreline exhibit continuous growth throughout the summer 
(Jefferies et al. 1981) in contrast to those in the higher marsh-
es. Moreover, flooding increases the recruitment of Salicor-
nia individuals from the seed bank and thus facilitates the 
emergence of new cohorts of seedlings throughout the year 
(Egan & Ungar 1999). Higher submersion frequency and du-
ration could create microsites of bare soil and gaps within 
the vegetation belt close to the new shoreline. These small 
scales openings could be used as regeneration niches (Grubb 
1977) by pioneer halophytes that could enter and persist in 
the community. Sea level rise will also increase the exposure 
of the marsh platform to high concentrations of NaCl that 
may have a positive effect on the total germination percent-
age of Salicornia during the entire season (Khan et al. 2000). 
As Salicornia species are more competitive at higher salini-
ties (Mahall & Park 1976, Callaway & Zedler 1997, Egan & 
Ungar 2001), a rising sea level may result in an increase in 
their cover (fig. 4H).

As elevation above the sea level is the main factor that 
strongly affects Aster tripolium (table 1), its population is ex-
pected to increase in the bay with increasing sea level rise 
(fig. 4C). Many studies corroborate this result and show that 
this species is characteristic of the lower marshes (Bakker & 
de Vries 1992) and that its growth is enhanced under flooded 
and saline conditions (Lenssen et al. 1995). Similar develop-
mental requirements have also been observed for Puccinellia 
maritima in earlier studies (Lenssen et al. 1995), and explain 
the negative effect of the elevation and distance from the sea 
on this species (table 1) which is typical of the lower marshes 
(Langlois et al. 2003). This species is also highly positively 
influenced by vegetation age (table 1) which reinforces its 
potential for progression in the next decades (fig. 4G). This 
result is consistent with the works of Erfanzadeh et al. (2010) 
who found that Puccinellia maritima is one of the three dom-
inant plants in ancient marsh.

Mixed models show that both the species, Festuca rubra 
subsp. litoralis and Halimione portulacoides, were influ-
enced positively by elevation and negatively by the distance 
from the sea. This common negative response to the influ-
ence of the sea would lead to their decrease with the sea level 
rise (fig. 4E & G), even if Festuca rubra subsp. litoralis may 
benefit from sedimentation in the low scenarios (between 
+0.5 m and +1.5 m). These two species typical of the well-
drained and upper marshes (Chapman 1950, Gray & Scott 
1977) would lose out in a high sea level rise scenario. It has 
been seen that under waterlogged conditions, the growth of 
salt marsh populations of Festuca rubra is depressed (Davies 
& Singh 1983). Halimione portulacoides also shows superfi-
cial rooting on waterlogged soil and thus is sensitive to inun-
dation (Van Diggelen 1991). Moreover, increased salinity is 
known to reduce the rates of CO2 assimilation for Halimione 
portulacoides (Redondo-Gómez et al. 2007) and to reduce 
the growth of Festuca rubra subsp. litoralis (Rozema et al. 
1978).

Elymus athericus (also known as Agropyron pungens, 
Agropyron pycnanthum, Elymus pycnanthus, Elytrigia ather-
ica and Elytrigia pugens) was absent or occurred at very low 
densities in the historical and botanical records of the Bay 
of Somme (Géhu et al. 1975). But in the past decades, the 
species has been increasing in cover on the upper salt marsh 
areas and close to the dikes (Meirland 2011). This rapid ex-
pansion has been noted in many other salt marshes of the 
English Channel and of the North sea (Bockelmann & Neu-
haus 1999, Valéry et al. 2004, Laffaille et al. 2005, Thyen 
& Exo 2005, Veeneklaas et al. 2013), and was interpreted 
to be an outcome of the natural succession with relation to 
the modifications of the patterns in the vertical accretion of 
the soil with marsh age (Veeneklaas et al. 2013). This may 
explain why Elymus athericus cover increases when accre-
tion is superior to sea level rise (+0.5 m scenario) (fig. 4D). 
Nevertheless, the spread of the species remains limited in the 
lower marshes due to competition by halophytes (Bockel-
mann & Neuhaus 1999), and can be countered by grazing 
and mowing in the upper marshes (Andresen et al. 1990, Van 
Wijnen et al. 1997, Veeneklaas et al. 2011). The species is 
also known to be restricted to high elevation characterized 
by sediments with high redox potential (Davy et al. 2011); 
this confirms the strong effect of the variable ALTISEA in 
the mixed model (table 1) and the decrease of the species 
in the higher sea level rise scenarios (fig. 4D). In the Bay of 
Somme, Elymus athericus also dominates on soil with higher 
nitrogen and organic matter and lower salt content (Géhu & 
Wattez 2007). In comparison to the observation of the spread 
of this grass along the European coasts, our model predicts 
a reverse trend in the future dynamics of Elymus athericus. 
With sea level rise, the halophytes may migrate towards the 
upper marsh areas and over-compete with Elymus athericus 
(Bockelmann & Neuhaus 1999), which explains its steep de-
crease in the next decades (fig. 4D). This predicted decline 
may be an opportunity to restore ecosystem processes and 
services altered by the spread of Elymus athericus (Valéry 
et al. 2004, Laffaille et al. 2005, Pétillon et al. 2005a), but 
the decline of Elymus may also have negative effects on the 
biodiversity and the conservation value of the salt marshes 
(Pétillon et al. 2005b, Pétillon et al. 2009).

At the regional scale, similar consequences of sea-level 
rise on halophyte species could be expected, especially in 
the bays of Canche, Authie or in the Seine estuary hosting 
common species with the bay of Somme. Our method could 
be applied in other estuarine systems of temperate regions 
where historical data are available. In the extreme sea-level 
rise scenarios, the increase of edible halophytes (Aster tripo-
lium and Salicornia species) could benefit to local markets 
but the consequences on the other ecosystem services are 
poorly understood. For example, the traditional grazing ac-
tivities in the bay of Somme (Meirland et al. 2013) could be 
influenced by the predicted sea-level rise but the magnitude 
of this influence is tricky to estimate. Indeed, the main plants 
of sheep diet (Puccinellia maritima, Festuca rubra, Elymus 
athericus and Aster tripolium) showed contrasted variation 
patterns with sea-level rise (fig. 4). The trend could be an 
increase of the most salt-tolerant species in their diet.
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CONCLUSION

In a near future, the rise of the sea level would influence 
the plant communities living in the salt marsh landscapes 
according to two main mechanisms. First, a heterogeneous 
vegetation would develop along the new shoreline and would 
promote the penetration of pioneer halophytes into areas 
very close to the coast. These pioneer halophytes are more 
sensitive to the distance from the sea than to the vegetation 
history. Second, the ancient vegetation patches in the upper 
marshes will be older in the year 2100 and thus will have 
time to accumulate more species. These old patches would 
dominate in proportion in the landscape and would host 
species-rich and late successional communities. Although 
the mean local species richness would increase with time in 
the marsh, the total area of marsh remaining above the sea 
level would sharply decrease in the landscape if sea level 
rise is not countered by accretion processes. Like in most of 
the coastal areas of the world, embankments, seawalls and 
other dykes protect the coastal cities of the Bay of Somme 
from the sea intrusions. In a sea level rise perspective, these 
man-made physical barriers could limit extensive transgres-
sion and long-distance migration of successional vegetation 
stages toward the interior of the continent and, in fine, would 
preclude the formation of new salt marsh habitats. In this 
perspective, a next step would be to build models including 
disturbances of sediment deposits, storm events, engineered 
buildings such as breakwaters, ditches and depolderisation 
projects.
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