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INTRODUCTION

The European Union’s Water Framework Directive (2000/60/
EC) was established as a framework for community action in 
the field of water policy (EU 2000). Its general objective is to 
achieve ‘good quality’ status for all surface waters through-
out Europe by 2015. Water status monitoring programmes 
use both chemical and biological elements to assess water 
quality (Allan et al. 2006). Although chemical analyses are 
routinely used technique, this approach has several disadvan-
tages, e.g. underestimation of variations occurring over short 
periods (Marker & Collet 1991) or the inability to detect all 
trace organic pollutants (Whitton 1991). Therefore, monitor-
ing of indicator organisms has begun to be an important part 

of water management (Whitton & Kelly 1995, EU 2000). Al-
gae respond rapidly to various pollutants and provide useful 
early warning signals about deteriorating ecosystem condi-
tions (McCormick & Cairns 1994). Diatoms (Bacillariophy-
ta) are routinely used algal indicators, which have a clear 
relationship to water quality (Cox 1991, Round 1991, Reid 
et al. 1995) and reflect environmental stress through shifts in 
the community species composition (Rott 1991). For taxo-
nomic identifications, comprehensive diatom keys are avail-
able (e.g. Krammer & Lange-Bertalot 1986, 1988, 1991a, 
1991b, Lange-Bertalot 2001, Krammer 2000, 2002, 2003), 
although recent diatom taxonomy is rather complicated due 
to the existence of many cryptic species and problematic spe-
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Background and aim – Mountain streams represent sensitive ecosystems of prime importance for 
biodiversity conservation. However, the knowledge of the impact of sewage pollution related to intensive 
recreational exploitation is still limited in these habitats. Our aim was to assess the response of stream 
diatom assemblages to sewage pollution in the Giant Mountains and the Bohemian Forest, and to find the 
main factors influencing the community structure. 
Methods – Epilithic samples from sixteen streams were collected, both in unaffected stream sections and at 
sites downstream of sewage outflows from mountain cottages or small villages. Basic physical and chemical 
parameters were measured and relative abundances of diatoms were determined using light microscopy.
Key results – A total number of 153 diatom taxa belonging to 44 genera were identified. Based on species 
data, samples were divided into two groups: the first belonged mainly to sites influenced by pollution, 
whereas the second consisted of not or slightly affected sites. Both groups were further divided into 
several subgroups characterised by specific ecological conditions and assemblage composition. Canonical 
correspondence analysis (CCA) revealed five environmental parameters with significant influence on 
diatom species composition, some of which were related to sewage pollution (pH, water temperature, 
discharge volume and concentrations of nitrate nitrogen and organic nitrogen).
Conclusions – As a consequence of sewage pollution, oligo- to mesotraphentic taxa were outcompeted 
by pollution tolerant taxa. However, pollution had no significant influence on diatom diversity, which was 
similar at sites both upstream and downstream of the outflows. In this study, diatom assemblages performed 
well as indicators of sewage pollution, and biomonitoring proved to be a useful tool in the detection of 
environmental stress in mountain streams. Overall, the response of diatom assemblages showed that an 
increase of recreational activities might significantly alter the ecological status of these ecosystems.
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cies complexes (e.g. Mann et al. 2004, Potapova & Hamilton 
2007, Vanormelingen et al. 2008).

There are many factors determining periphyton bio-
mass and structure in rivers and standing waters, with nu-
trient status being one of the most important (Rosemond et 
al. 1993, Dodds et al. 2002, Carr et al. 2005, Veraart et al. 
2008). Therefore, changes in diatom communities are used to 
indicate eutrophication (Sládeček 1986, Kelly 2003, Kelly & 
Wilson 2004, Poulíčková et al. 2004, Bellinger et al. 2006). 
Diatoms are also sensitive to water pH, and the occurrence of 
particular taxa can indicate acidification (Coring 1996, Passy 
2006). As a result, they have successfully been used in the 
establishment of diatom-environmental transfer functions 
predicting pH values and nutrient concentrations (Cameron 
et al. 1999, King et al. 2000, Winter & Duthie 2000, Kovácz 
et al. 2006). The structure of diatom communities may also 
provide information about the impacts of heavy-metal pollu-
tion on freshwater ecosystems (Cattaneo et al. 2004, Duong 
et al. 2008). Many diatom based indices have recently been 
used in routine monitoring programmes in European Un-
ion’s countries (Lenoir & Coste 1996, Kelly 1998, Rott et 
al. 2003, Rimet et al. 2005, Szilágyi et al. 2008, Kelly et al. 
2008, 2009, Szczepocka & Szulc 2009).

Although extensive research into the impacts of eu-
trophication on diatoms has already been performed in low-
land rivers and lakes (e.g. Lowe & McCullough 1974, Rott 
et al. 1998, Soininen 2002, Potapova et al. 2005, Camargo 
& Jiménez 2007), mountain stream assemblages have re-
ceived much less attention. Algae from low order mountain 
streams, however, respond much more rapidly to pollution 
in comparison with algae from larger streams (Rott et al. 
2006), and therefore they can quickly indicate actual envi-
ronmental changes. This topic has recently been the subject 
of increased interest, mainly because of the continually ex-
panding recreational activities within mountain ecosystems. 
A few studies have explored the impact of domestic sewage 
or agriculture on mountain stream periphyton or diatom as-
semblages in particular (Bombówna 1977, Kawecka 1977, 
1980, 1981, Jüttner et al. 1996, 2003, Lukavský et al. 2004, 
2006, Yu & Lin 2009), and showed a considerable shift in the 
species composition of attached algae from oligotraphentic 
towards eutraphentic taxa as the result of anthropogenic pol-
lution. 

This study investigates epilithic diatom assemblages 
from streams of the Giant Mountains and the Bohemian For-
est (Czech Republic). Until recently, waters of both moun-
tain ranges have been heavily impacted by anthropogenic 
acidification (Vrba et al. 2003, Sienkiewicz et al. 2006). Due 
to the marked decline of sulphur and nitrogen emissions in 
Central Europe during 1990s, a significant but slow recovery 
of water chemistry was observed (Vrba et al. 2003). Current-
ly, increasing recreational activities are a new threat to the 
stability of these ecosystems. Mountain streams are among 
the first recipients of potential anthropogenic pollution (such 
as agricultural runoff, domestic sewage outflows, pasturage). 
Nevertheless, only few detailed studies using local stream 
periphyton as the indicator of water quality changes are 
available. Picińska-Fałtynowicz (2007) described the eco-
logical preferences of diatom flora in selected streams of the 
Giant Mts. Lukavský et al. (2004, 2006) observed a signifi-

cant influence of sewage outflows on periphytic assemblages 
of the Bohemian Forest streams.

Using a reference condition approach, the aim of our 
study was to explore the response of epilithic diatom assem-
blages to sewage outflows from cottages and small villages 
in selected mountain streams of the Giant Mts. and the Bohe-
mian Forest. We have also tried to assess the main environ-
mental factors influencing diatom assemblage composition.

Materials and methods

Sampling sites

We investigated sixteen streams in two Czech mountain 
ranges, the Giant Mts. (Krkonoše) and the Bohemian For-
est (Šumava), both of which have the status of a national 
park. The Giant Mts. are situated in the north eastern part 
of the Czech Republic on the border with Poland. Twenty 
three sites on nine streams were sampled at elevations from 
520–1420  m (fig.  1A, table 1). The geology of the area is 
composed of Krkonoše-Jizera Crystalline (mica schists, 

Figure 1 – Location of the investigated streams in: A, the Giant 
Mountains; B, the Bohemian Forest. Stream codes: 1 – Vltava, 3 – 
Vydra, 5 – Spůlka, 6 – Řezná, 7 – Prášilský potok, 8 – Vydří potok, 
9 – Hrádecký potok, 10 – Bílé Labe (upper part), 11 – Bílé Labe 
(lower part), 12 – Hřímavá bystřina, 13 – tributary of Zelený potok, 
14 – Jánský potok, 15 – Úpa, 16 – Kalná, 18 – Dolský potok, 19 – 
Žalský potok.
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Range Stream Code
GPS Altitude

N E m a.s.l.
BF Vltava 1 1.2 49°00’51.9” 13°34’38.4” 1048

1.3 49°00’46.9” 13°35’04.6” 1030
1.4 48°59’58.9” 13°37’57.3” 949
1.5 48°59’40.0” 13°39’23.2” 904
1.6* 48°59’23.5” 13°39’40.9” 894
1.7 48°59’21.1” 13°39’43.0” 891

Vydra 3 3.1 49°03’22.6” 13°30’42.7” 913
3.2 49°03’33.6” 13°30’40.9” 911
3.3 49°04’54.7” 13°30’54.3” 815
3.4 49°04’56.8” 13°30’49.9” 814

Spůlka 5 5.1 49°03’58.5” 13°37’57.2” 959
5.2 49°04’23.2” 13°38’02.3” 883
5.3 49°04’02.8” 13°37’58.4” 938
5.4 49°04’56.7” 13°38’49.9” 812
5.5* 49°05’00.1” 13°38’31.3” 863

Řezná 6 6.0* 49°08’59.1” 13°15’18.2” 841
6.1 49°09’35.0” 13°15’39.8” 880
6.2 49°07’42.1” 13°13’06.4” 729

Prášilský potok 7 7.0 49°05’47.8” 13°22’46.6” 891
Vydří potok 8 8.0* 49°02’57.1” 13°39’51.2” 990

8.2 49°02’57.4” 13°39’54.4” 992
8.3* 49°02’57.4” 13°39’54.4” 993
8.4 49°02’56.0” 13°39’54.9” 990
8.5* 49°02’53.5” 13°39’58.1” 985

Hrádecký potok 9 9.1 49°04’51.7” 13°29’06.6” 813
9.2 49°04’51.6” 13°29’07.9” 812

GM Bílé Labe (upper part) 10 10.1 50°44’03.9” 15°41’54.9” 1416
10.2 50°44’05.1” 15°41’44.5” 1412
10.3 50°44’06.7” 15°41’41.5” 1409
10.4 50°44’10.4” 15°41’34.2” 1401

Bílé Labe (lower part) 11 11.1 50°44’28.9” 15°38’51.1” 1012
11.2* 50°44’28.8” 15°38’51.1” 1012
11.3 50°44’28.6” 15°38’47.9” 1005

Hřímavá bystřina 12 12.1 50°45’24.7” 15°38’04.0” 1116
12.2 50°45’20.9” 15°38’00.9” 1081
12.3 50°44’54.5” 15°37’33.9” 879

tributary of Zelený potok 13 13.1 50°42’36.5” 15°41’54.9” 1200
13.2 50°42’32.5” 15°41’54.4” 1116

Jánský potok 14 14.1 50°37’50.4” 15°46’00.2” 710
14.2 50°37’43.9” 15°47’22.6” 607

Úpa 15 15.1 50°41’29.9” 15°43’47.3” 803
15.2 50°41’42.8” 15°44’29.4” 781

Kalná 16 16.1 50°36’58.7” 15°50’24.4” 520
16.2* 50°36’59.1” 15°50’27.1” 517

18 16.3* 50°37’01.0” 15°50’22.6” 519
Dolský potok 18.1* 50°43’36.3” 15°38’50.2” 884

18.2* 50°43’41.1” 15°36’41.1” 762
Žalský potok 19 19.1 50°39’01.7” 15°32’51.8” 606

19.2 50°38’53.3” 15°32’51.9” 598

Table 1 – List of sampling sites.
BF: the Bohemian Forest; GM: the Giant Mountains. Codes in bold represent outflows of sewage treatment plants, asterisks mark sites where 
sampling was performed only once.
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phyllites, orthogneisses) and Krkonoše-Jizera Pluton (gran-
ite) (Chaloupský 1989). The most frequent vegetation types 
are spruce-beech, spruce, beech-spruce and mountain pine 
forests and artic-alpine tundra. The mountain range has peri-
ods of long-lasting snowfall, with snow cover persisting un-
til late spring (especially above 800 m a.s.l.) and snow melt 
floods occur often. The annual flow regime is usually char-
acterised by a spring maximum and an autumn-winter mini-
mum (Dubicki & Malinovska-Małek 2007).

The Bohemian Forest lies in the south western part of the 
country along the Czech-German-Austrian border. Twenty 
six  sites on seven streams were sampled at elevations from 
730–1050  m (fig.  1B, table 1). The bedrock is formed by 
granite containing a large amount of gneiss, micaschist and 
phyllite xenoliths (Babůrek 1996). Spruce monocultures 
are the prevailing vegetation, with a lesser area covered by 
mountain pine and artic-alpine tundra.

Average annual precipitation is similar for both ranges 
(800–1600 mm).

Streams running through areas affected by recreational 
activities were selected (the vicinity of mountain cottages or 
small villages with large number of tourists). Altogether, 132 
samples were collected both in unaffected stream parts and 
at sites downstream of sewage outflows, in order to analyse 
the influence of sewage pollution. Sampling was carried out 
in summer 2004 and twice a year in 2005–2006 (early spring 
– beginning of snow melt, summer – period without snow 
cover).

Physical and chemical variables

In the field, pH, conductivity, water temperature and con-
centration of dissolved oxygen were measured using hand-
held instruments from WTW (Wissenschaftlich-Technische 
Werkstätten GmbH, Weilheim, Germany). Discharge was 
estimated from water depths across the river profile and cur-
rent velocity. In the laboratory, acid neutralisation capacity 
(ANC), nutrients and chloride concentration were analysed 
following the methods described in Grasshof (1983). For 
more details, see Lukavský et al. (2006).

Sample preparation and diatom identification

At each sampling site, epilithic diatoms were scraped from 
three randomly chosen submerged stones with a toothbrush 
and preserved in formaldehyde (4% final concentration). In 
the laboratory, samples were washed several times with dis-
tilled water and then boiled in hydrogen peroxide to eliminate 
organic matter. Clean diatom frustules were mounted using 
Pleurax (Fott 1954). To assess relative species abundances, 
up to 300 valves were counted using a Nikon ECLIPSE E400 
light microscope. Nomenclature follows Krammer & Lange-
Bertalot (1986, 1988, 1991a, 1991b), Lange-Bertalot (2001) 
and Krammer (2000, 2002, 2003). The type slide of Gom-
phonema parvulum Kütz. var. exilissima Grunow [Types du 
Synopsis des Diatomées de Belgique n° 220 (Arran, Scot-
land) present in the Van Heurck Collection at the National 
Botanic Garden of Belgium] was observed to compare the 
type population with the population of G. parvulum Kütz. 

from studied streams and to confirm the correctness of G. 
parvulum identification.

Data analysis

The Shannon diversity index and evenness of diatom as-
semblages were calculated according to Shannon & Weaver 
(1949). To assess the relationships between environmental 
parameters and diversity, a correlation matrix was calculat-
ed using STATISTICA software (version 7.0, StatSoft Inc., 
Tulsa, Oklahoma). Significant correlations were set with p < 
0.05. Nonparametric tests (Mann Whitney or Kruskal-Wallis 
with Dunn’s multiple comparison test) were applied for com-
parisons of environmental data sets. To perform multivari-
ate statistical analyses, only those diatom taxa occurring at 
least in one sample with a relative proportion of 1% or more 
were included in analyses. At first, detrended correspond-
ence analysis (DCA) was performed to assess the length of 
the gradient. Since it was longer than 2, non-linear meth-
ods (DCA, CCA – canonical correspondence analysis) were 
used in subsequent analyses (ter Braak & Prentice 1988). To 
eliminate the influence of general stream characteristics (e.g. 
location, bedrock etc.) and sampling season, covariates were 
established combining relevant data. We used step-forward 
regression to explore those environmental parameters sig-
nificantly correlated with assemblage composition (p < 0.05, 
Monte Carlo randomization test with 500 permutations), and 
included them in the model. To classify similarities among 
individual sampling sites, we ran cluster analysis of spe-
cies data using STATISTICA (complete linkage clustering 
with the City-block distances as dissimilarity measure) and 
indirect ordination analysis of species data. All ordinations 
were processed using CANOCO and CanoDraw software 
(ter Braak & Šmilauer 2002). Acronyms of diatom taxa were 
generated ad hoc.

Results

Environmental characteristics of sites

We measured twelve chemical parameters of water together 
with water temperature and discharge. There were large gra-
dients in nutrient concentrations (ammonium nitrogen (NH4-
N) 1–54298 μg  l–1, nitrate nitrogen (NO3-N) 436–28059 
μg  l–1), conductivity (10–690  µS  cm–1) and pH (4.7–8.2). 
Water temperature was related mainly to sampling season – 
the average in early spring was 2.3 ± 1.4°C, and in summer 
11.8  ±  2.7°C. In spring 2005 and 2006, there were higher 
concentrations of NH4-N and NO3-N in comparison with 
summer. Besides temperature changes, it was the only con-
sistent interseasonal pattern. Discharge also corresponded 
with season, but the differences were not significant. It was 
always very low at some sampling sites (< 20  l  s–1). There 
were significant differences (p < 0.01) in ANC, conductiv-
ity, chlorides and nutrients [NH4-N, nitrite nitrogen (NO2-N), 
total dissolved nitrogen (TDN), organic nitrogen, phosphate 
phosphorus (PO4-P), total dissolved phosphorus (TDP)] be-
tween unaffected sampling sites and sites downstream of 
sewage outflows. Several environmental characteristics (or-
ganic nitrogen, TDP, dissolved oxygen (DO) and chlorides) 
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differed significantly (p < 0.001) between both mountain 
ranges (table 2).

Diatom species composition and diversity

We identified 153 diatom taxa (including species and varie-
ties) belonging to 44 genera. The most abundant taxa were 
Achnanthidium minutissimum (Kütz.) Czarn. sensu lato, 
representing 10% of all counted valves, Eolimna minima 
(Grunow) Lange-Bert. (9%), Diatoma mesodon (Ehrenb.) 
Kütz. (9%), Fragilaria capucina Desm. sensu lato (8%) and 
Gomphonema parvulum (7%). The genus Eunotia dominat-
ed in the samples (12%) and had the highest taxa number 
(17) – E. exigua (Bréb.) Rabenh. (5%) and E. minor (Kütz.) 
Grunow (3%) being most prevalent. Other important genera 
were Psammothidium (6%), Planothidium (5%), Encyonema 
(4%), Cocconeis (3%) and Pinnularia (3%).

The medians of the Shannon diversity index were similar 
within both ranges (table 2), as well as at polluted (2.2 ± 0.5) 
and unaffected (2.3 ± 0.4) sampling sites. Except for a weak 
negative correlation with chloride concentration (r2 = 0.2), 
no significant (p < 0.05) correlations of diversity and envi-
ronmental variables were found. However, there were differ-
ences in the relative abundances of individual taxa between 
both mountain ranges (table 3).

GM BF
ANC (mmol l–1) 0.2 (0.02–2.1) 0.3 (0.1–1.4)
NH4-N (µg l–1)* 37 (6–54298) 76 (1–15540)
NO2-N (µg l–1)** 4 (2–144) 7 (0.5–132)
NO3-N (µg l–1) 597 (21–28059) 447 (31–3436)
TDN (mg l–1) 1.0 (0.4–56.3) 1.1 (0.7–17.2)
PO4-P (µg l–1) 17 (0.01–14976) 23 (1–2086)
TDP (µg l–1)*** 80 (48–15754) 101 (60–3170)
orgN (µg l–1)*** 350 (136–5320) 542 (179–6715)
Cl– (mg l–1)*** 0.9 (0.2–65.7) 1.9 (0.7–20.0)
Temp (°C) 9.1 (2.3–18.4) 10.5 (0.3–17.6)
DO (mg l–1)*** 8.6 (1.8–19.0) 7.3 (1.2–11.9)
pH 6.4 (4.8–7.8) 6.7 (4.7–8.2)
Cond (µS cm–1) 36 (10–690) 30 (13–169)
Q (l s–1) 43 (0.1–2000) 100 (0.1–3200)
H* 2.29 (1.08–3.03) 2.40 (1.14–3.22)

Table 2 – Medians of environmental variables and diversity 
index in the Giant Mountains (GM) and the Bohemian Forest 
(BF).
Asterisks indicate significant differences between both mountain 
ranges (* p<0.05, ** p<0.01, *** p<0.001). Minimal and maximal values 
are given in parentheses. Abbreviations: (ANC) acid neutralisation 
capacity, (NH4-N) ammonium nitrogen, (NO2-N) nitrite nitrogen, 
(NO3-N) nitrate nitrogen, (TDN) total dissolved nitrogen, (PO4-P) 
phosphate phosphorus, (TDP) total dissolved phosphorus, (orgN) 
organic nitrogen, (Cl–) chlorides, (Temp) water temperature, (DO) 
dissolved oxygen, (Cond) conductivity, (Q) discharge, (H) Shannon 
diversity index.

Grouping of diatom assemblages

Based on the species data (115 diatom taxa were included 
in the model), cluster analysis divided the 132 samples into 
two groups. A comparison of the environmental parameters 
of these groups clearly showed that the division was gener-
ated predominantly due to gradients in nutrient concentra-
tions, pH and discharge (table 4). Group 1 contained 70 sam-
ples and mainly linked sites affected by sewage outflows. 
Group 2 consisted of 62 samples from non-affected or only 
slightly affected sites with lower nutrient concentrations. 
Conductivity, ANC, pH and concentrations of NO3-N, TDN, 
PO4-P and chlorides were significantly higher within Group 
1 when compared to Group 2 (p < 0.001), indicating the in-
fluence of sewage pollution on sites from Group 1. Signifi-
cantly lower discharges (p < 0.001) were also characteristic 
for Group 1 (table 4).

The division of samples into the two groups was con-
firmed by DCA (fig. 2). The first two canonical axes com-
prised 18.8% of total explained variability (λ1 = 0.117, λ2 = 
0.071). The first axis separated Groups 1 and 2 to the right 
and left side of the graph and therefore seemed to correspond 
with the impact of sewage pollution. In the case of Group 2, 
the second axis could be taken to represent affiliation to a 
particular mountain range, since it separated the Giant Mts. 
sites into the lower part of the graph, and Bohemian Forest 
sites to the upper part.

Furthermore, cluster analysis of species data belong-
ing to individual groups (not shown) separated several as-
semblage types (subgroups), which were characterized by 
different dominant taxa and specific ecological conditions. 
This subdivision is visualised using DCA (fig. 3). However, 
eight samples had an outlying position and could not be in-
cluded into any of the subgroups. This was partly caused by 
the dominance (or at least high relative abundance) of taxa 
which were usually rare in other samples, such as Mayamaea 
atomus var. permitis (Hust.) Lange-Bert. (in samples with 
high concentration of TDN (~  2800 and 1700  μg  L–1) and 
TDP (~ 240 and 110 μg L–1) together with very low discharge 
(1 and 2 L s–1), Adlafia suchlandtii (Hust.) Lange-Bert., Me-
ridion circulare (Grev.) C.Agardh var. circulare or Surirella 
roba Leclerq. Within Group 1, four subgroups (1A–D) could 
be distinguished (fig. 3A, table 4):

Subgroup 1A – samples most affected by sewage pollu-
tion, collected downstream of the outflows (Vydří, Spůlka, 
tributary of Hřímavá bystřina). The eutraphentic taxon Eo-
limna minima dominated and the meso- to eutraphentic 
Planothidium lanceolatum (Brébisson) Round & Bukht. and 
Reimeria sinuata (W.Greg.) Kociolek & Stoermer had high 
abundances. High electrolyte content and concentrations of 
both nitrogen and phosphorus compounds together with very 
low discharges were characteristic for these samples. The 
highest median concentration of organic nitrogen (p < 0.05) 
was found in this subgroup (table 4). 

Subgroup 1B – samples collected in five streams in the 
Giant Mts. (Hřímavá bystřina, Janský potok, Úpa, tributary 
of Zelený potok and Dolský potok). Achnanthidium minutis-
simum s.l. and Diatoma mesodon, generally considered as 
oligo- to mesotraphentic, were dominant.
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Taxon name Code
Group 1 Group 2

GM BF GM BF
Achnanthidium minutissimum (Kützing) Czarnecki sensu lato ACHNMINU X x x x
Adlafia suchlandtii (Hustedt) Lange-Bertalot ADLASUCH o o + +
Amphora pediculus (Kützing) Grunow AMPHPEDI o + + +
Brachysira brebissonii Ross BRACBREB + + o +
Cocconeis placentula var. euglypta Ehrenberg COCCPLEU + – + –
Cocconeis placentula var. lineata (Ehrenberg) Van Heurck COCCPLLI x o + +
Diatoma mesodon (Ehrenberg) Kützing DIATMESO x x X x
Encyonema minutum D.G. Mann ENCYMINU o x + +
Eolimna minima (Grunow) Lange-Bertalot EOLIMINI X X o x
Eunotia bilunaris (Ehrenberg) Mills EUNOBILU + + + +
Eunotia exigua (Brébisson) Rabenhorst EUNOEXIG o x X o
Eunotia incisa Gregory EUNOINCI + + x o
Eunotia minor (Kützing) Grunow EUNOMINO o o o o
Eunotia muscicola var. tridentula Nörpel & Lange-Bertalot EUNOMUTR – + – +
Eunotia rhomboidea Hustedt EUNORHOM + + + o
Eunotia tenella (Grunow) Cleve EUNOTENE + – o +
Fragilaria capucina Desmasières sensu lato FRAGCAPU o x x X
Fragilaria virescens Ralfs FRAGVIRE + + o o
Frustulia erifuga Lange-Bertalot & Krammer FRUSERIF – – + +
Frustulia saxonica Rabenhorst FRUSSAXO + + + +
Gomphonema olivaceum var. minutissimum Hustedt GOMPOLMI + o + +
Gomphonema parvulum Kützing GOMPPARV o x o X
Gomphonema productum (Grunow) Lange-Bertalot & Reichardt GOMPPROD + + + +
Gomphonema sp.1 GOMPSPE1 – + + +
Gomphonema truncatum Ehrenberg GOMPTRUN – + + +
Hantzschia amphyoxis (Ehrenberg) Grunow HANTAMPH + + + +
Karayevia oblongella (Østrup) Aboal KARAOBLO o o + x
Mayamaea atomus var. permitis (Hustedt) Lange-Bertalot MAYAATPE o + – +
Meridion circulare (Greville) Agardh var. circulare MERICICI o o + +
Meridion circulare var. constrictum (Ralfs) Van Heurck MERICICO + + + o
Navicula cryptocephala Kützing NAVICRYP + + + +
Navicula gregaria Donkin NAVIGREG + + + +
Navicula lundii Reichardt NAVILUND + + + +
Navicula rhynchocephala Kützing NAVIRHYN + + – +
Naviduladicta seminulum (Grunow) Lange-Bertalot NAVISEMI + + + –
Nitzschia dissipata (Kützing) Grunow NITZDISS + + + +
Nitzschia fonticola Grunow NITZFONT + + – +
Nitzschia frustulum (Kützing) Grunow NITZFRUS + + + +
Nitzschia inconspicua Grunow NITZINCO + + – –
Nitzschia palea (Kützing) W. Smith NITZPALE o o + +
Pinnularia brebissonii var. bicuneata Grunow PINNBRBI + + + +

Table 3 – List of the main diatom taxa in Group 1 (sites strongly influenced by sewage pollution) and Group 2 (sites with no or slight 
influence of sewage pollution), together with differences in their relative abundances between the Giant Mts. (GM) and the Bohemian 
Forest (BF). 
Mean percentage abundances are shown as the symbols: X ≥ 10; 5 ≤ x < –10; 1 ≤ o < 5, + < 1; – absent.
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Taxon name Code
Group 1 Group 2

GM BF GM BF

Pinnularia subcapitata Gregory PINNSUBC + + o o
Planothidium lanceolatum (Brébisson) Round & Bukhtiyarova PLANLANC x X + o
Psammothidium bioretii (Germain) Bukhtiyarova & Round PSAMBIOR + + o +
Psammothidium subatomoides (Hustedt) Bukhtiyarova & Round PSAMSUBA o o x x
Reimeria sinuata (Gregory) Kociolek & Stoermer REIMSINU o o + +
Surirella roba Leclerq SURIROBA + + o +
Synedra ulna (Nitzsch) Ehrenberg SYNEULNA + + + +
Tabellaria flocculosa (Roth) Kützing TABEFLOC + + x o

Table 3 (continued) – List of the main diatom taxa in Group 1 (sites strongly influenced by sewage pollution) and Group 2 (sites with 
no or slight influence of sewage pollution), together with differences in their relative abundances between the Giant Mts. (GM) and 
the Bohemian Forest (BF). 

Subgroup 1C – samples from the same streams as in 1B, 
but only from sites downstream of sewage outflows. The 
abundance of meso- to eutraphentic Cocconeis placentula 
var. lineata (Ehrenberg) Van Heurck markedly increased. 
The influence of sewage pollution was indicated by signifi-
cantly higher ANC, pH, electrolyte content and TDN con-
centration (p 0.05) within Subgroub 1C, when compared to 
Subgroup 1B (table 4).

Subgroup 1D – samples collected in the Bohemian For-
est, at sites moderately influenced by sewage pollution (Vl-
tava River below the Borová Lada village, sites from the 
stream Spůlka upstream or far downstream of the sewage 
outflow, Řezná). The eutraphentic taxa Planothidium lan-
ceolatum and Eolimna minima dominated, but the oligo- to 
mesotraphentic Diatoma mesodon, Fragilaria capucina 
s.l., Encyonema minutum D.G. Mann and Achnanthidium 
minutissimum s.l. also had high relative abundances.

Within the “oligotrophic” Group 2, four subgroups (2A–
D) could be distinguished (fig. 3B, table 4):

Subgroup  2A – all samples from the upper part of the 
Bílé Labe River. The oligotraphentic Psammothidium sub-
atomoides (Hustedt) Bukhtiyarova & Round and oligo- to 
mesotraphentic Diatoma mesodon dominated. High relative 
abundances of Eunotia incisa Gregory and E. minor indicat-
ed more acidic conditions.

Subgroup  2B – all samples from the lower part of the 
Bílé Labe River, characterised mainly by high discharge and 
low nutrient concentrations. The acidophilic Eunotia exigua 
together with Achnanthidium minutissimum s.l. were the 
dominant taxa.

Subgroup 2C – parts of the stream Vydří far downstream 
of the sewage outflow. Low pH at these sites (pH ~ 5.3) was 
reflected by acidophilic assemblages, dominated mainly by 
Eunotia species (E. rhomboidea Hust., E. minor, E. exigua) 
and Planothidium lanceolatum. This subgroup was also 
characterised by low discharge (1 l s–1).

Subgroup  2D – samples collected in four Bohemian 
Forest streams (Vydra and Vltava near the Kvilda village, 
Prášilský potok and Hrádecký potok). These streams were 
characterised mainly by high discharge and low nutrient con-

centrations. Gomphonema parvulum and Fragilaria capuci-
na s.l. dominated in these assemblages.

While several assemblage types were identified 
in the Giant Mts. (separated as individual subgroups 
1A,1B,1C,2A,2B), the majority of the Bohemian Forest 
samples was divided into only two subgroups (meso- to eu-
trophic subgroup  1D, oligo- to mesotrophic subgroup  2D), 
Subgroup 2C was an exception with specific environmental 
conditions (fig. 3A & B).

Overall, CCA demonstrated that concentrations of NO3-
N and organic nitrogen, pH, water temperature and discharge 
were the parameters having the most significant impact on 
species composition (p < 0.05). Altogether, they explained 
15.8% of the cumulative variance in the species data. The 
relationships of the 34 main diatom taxa to these parameters, 
together with the position of subgroups along the environ-
mental gradient, are shown in fig. 4. The abundant species 
Eolimna minima and Planothidium lanceolatum were clearly 
associated with eutrophic circumneutral conditions, while 
Eunotia spp. were characteristic for oligo- to mesotrophic 
conditions with lower pH. 

Discussion

Diatom species composition and diversity

Diatom species composition and richness were similar as 
in previous surveys performed in these mountain ranges. 
Picińska-Fałtynowicz (2007) studied epilithic stream diatoms 
in the Polish part of the Giant Mts. and the Sněžník Massif 
and identified 184 diatom taxa. Since her study focused only 
on streams with ultraoligo- to oligotrophic water, she did not 
find Eolimna minima, which dominated at sites strongly in-
fluenced by wastewater in our study (fig. 3A). Lukavský et 
al. (2004) identified 144 diatom taxa in streams in the Czech 
and German parts of the Bohemian Forest and their records 
correspond well with our results. Diatom assemblages with 
similar species richness have been found in other European 
(Kawecka 1981, Pfister 1992, Rott et al. 2006, Kawecka & 
Robinson 2008) and Asian mountain ranges (Jüttner et al. 
1996, 2003, Yu & Lin 2009).
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Figure 2 – Detrended correspondence analysis (DCA) of species 
data (n = 132).

Our study shows no significant pattern indicating the in-
fluence of sewage pollution on diatom diversity. Similarly, 
during our previous research in the Bohemian Forest, we 
did not observe any shifts in the overall phytobenthos spe-
cies richness or diatom diversity in relation to sewage out-
flows (Lukavský et al. 2006). Bellinger et al. (2006) did not 
find significant differences in diatom species richness and 
diversity between deforested and forested watersheds from 
Gombe Stream National Park (Tanzania). On the other hand, 
Jüttner et al. (1996, 2003) observed significantly higher dia-
tom species richness and diversity in agricultural Nepalese 
streams, where they were significantly correlated with wa-
ter chemistry and stream habitat structure. Yu & Lin (2009) 
studied epilithic algae (mainly diatoms) from the mountain 
streams of Taiwan and found higher (though not significant-
ly) species richness in assemblages from waters influenced 
by agriculture. Marcus (1980) found significant correlations 
between diatom diversity and nitrogen concentrations, with 
diversity first increasing and then decreasing as a function of 
nutrient enrichment. We did not see this pattern in our data, 
which could be affected by the choice of substrate for sam-
pling, since various types of substrate can be inhabited by 
different diatom assemblages, giving dissimilar information 
about the environment (Cox 1991, Poulíčková et al. 2004, 
Besse-Lototskaya et al. 2006). Only epilithic diatoms were 
sampled, whereas epipelic and epiphytic assemblages were 
not included and therefore diversity measures did not reflect 
the full richness in these streams. In addition only 300 valves 
were counted which is insufficient to assess diversity. Other 
factors such as current velocity or substrate size and struc-
ture can also considerably influence diversity and composi-
tion of diatom assemblages (Cattaneo et al. 1997, Müllner & 
Schagerl 2003, Soininen 2004), but their effects on diversity 
were not studied in our survey.

Diatom responses to water quality

We found that the eutraphentic Eolimna minima indicated 
high concentrations of NO3-N and organic nitrogen. This spe-
cies is generally considered as resistant to organic pollution, 
tolerating α-meso- to polysaprobic conditions (Krammer & 

Lange-Bertalot 1986), and its increased abundance has been 
observed in other mountain streams with higher trophic lev-
els (Jüttner et al. 1996, 2003, Gomà et al. 2005). Eutrophic 
conditions were also reflected by Cocconeis placentula var. 
lineata, Mayamaea atomus var. permitis, Planothidium lan-
ceolatum and Reimeria sinuata. These taxa are common in 
lowland rivers (Krammer & Lange-Bertalot 1986, 1991b, 
Kim et al. 2008, Szczepocka & Szulc 2009), and have been 
often found in meso- to eutrophic conditions in mountain 
streams (Kawecka 1981, Jüttner et al. 2003, Gomà et al. 
2005, Rott et al. 2006, Picińska-Fałtynowicz 2007). Even if 
elsewhere Gomphonema parvulum had higher abundances 
in samples with mean or high sewage pollution impact (e.g. 
Szczepocka & Szulc 2009), it predominated mainly in oligo- 
to mesotrophic conditions at sites in the Bohemian Forest 
(Subgroup 2D). This was unexpected, because the majority 
of diatom studies classify G. parvulum as a eutraphentic spe-

Figure 3 – Detrended correspondence analysis (DCA) of species 
data belonging to: A, Group 1, B, Group 2. Subgroups distinguished 
within both groups (1A–D, 2A–D), as well as several outliers are 
shown together with mean percentage abundances of dominating 
diatom taxa. For taxa codes see table 3. The Giant Mts. (circles), the 
Bohemian Forest (squares).
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cies (Rott et al. 1997, 1999, Kelly 2000, Gomà et al. 2005). 
In the study of Lowe & McCullough (1974), G. parvulum 
was the dominant species in assemblages intensively influ-
enced by the effluent of sewage treatment plant. Neverthe-
less, it can be found in oligotrophic waters as well (Kawecka 
1981, Picińska-Fałtynowicz 2007). Morphological variabil-
ity within the G. parvulum complex is well-known and dif-
ferent species can be difficult to distinguish (Dawson 1972 
Krammer & Lange-Bertalot 1986, 1991b, Salomoni et al. 
2006, Tobias & Gaiser 2006). It is possible that previous 
specimens identified as G. parvulum belonged to other spe-
cies, which would explain its wide ecological valence. How-
ever, further detailed research is needed to document these 
species and relate them to the environmental conditions in 
which they are found. Gomphonema exilissimum (Grunow) 
Lange-Bertalot & Reichardt is a species, which is morpho-
logically very similar to G. parvulum and occurs mainly in 
oligotrophic waters (Krammer & Lange-Bertalot 1986). To 
confirm the correct identification of the populations in this 
study, a comparison with G. exilissimum type population was 
made. Since there were obvious morphological differences 
between studied populations and the type population (espe-
cially in length-width ratio, which was considerably higher 
in type population), we are confident about the identification 
of G. parvulum.

Similarly, more studies are necessary to correctly identify 
Achnanthidium minutissimum (Potapova & Hamilton 2007) 
and morphologically similar species. We found A. minutis-
simum s.l. predominantly at sites with oligotrophic condi-
tions or with only slightly enhanced nutrient levels, which 
corresponds with other studies of mountain streams, lakes 
and springs (Jüttner et al. 1996, 2003, Gomà et al. 2005, Rott 

Figure 4 – Canonical correspondence analysis (CCA) – relationships 
of 34 main diatom taxa to environmental parameters with significant 
influence on assemblage composition. Taxa and ecological 
conditions in generated subgroups are shown. For parameter codes 
see table 2, taxa codes table 3.

et al. 2006, Kawecka & Robinson 2008). Yu & Lin (2009), 
however, observed high abundances of this species in moun-
tain streams with high nitrogen concentrations. Although A. 
minutissimum is considered a oligotraphentic species (Rott 
et al. 1999), it has also been reported as tolerant to slight or-
ganic pollution (Rott et al. 1997) and to grow in conditions 
with increased nitrogen levels (Fairchild et al. 1985). Dia-
toma mesodon, Fragilaria capucina s.l. and Psammothidi-
um subatomoides were found predominantly at sites not or 
slightly -to- moderately affected by sewage pollution. These 
taxa are considered to be very good indicators of oligotroph-
ic conditions (Kawecka 1981, Krammer & Lange-Bertalot 
1991a, 1991b, Rott et al. 1997, 1999). However, Fragilaria 
capucina s.l. is another species complex which comprises 
taxa of contrasting ecological preferences. D. mesodon is 
one of the most common diatom species found in mountain 
water bodies (Krammer & Lange Bertalot 1991a, Cantonati 
et al. 2007). Species in the genus Eunotia are good indica-
tors of water pH and were found at acidic sites. Veselá & 
Johansen (2009) considered Eunotia species as characteristic 
for acidic streams in the Elbsandsteingebirge region (on the 
Czech-German border west of the Giant Mts.). In our study, 
Eunotia rhomboidea and E. exigua were the most acid toler-
ant species and belonged to Subgroup  2C, where the low-
est pH values (4.7–5.4) were measured (fig. 3B). These taxa 
are considered by Coring (1996) to be the dominant inhabit-
ants of permanently acidic streams with pH < 5.5. Moderate 
acidic conditions were preferred by Pinnularia subcapitata 
Gregory, an oligotraphentic species (Rott et al. 1999) often 
used to indicate acidification (Coring 1996, Schaumburg et 
al. 2004, Kim et al. 2008).

Environmental parameters influencing diatom species 
composition

Sewage pollution at sites downstream of outflows markedly 
affected water chemistry and caused shifts from oligotroph-
ic to eutrophic conditions. The effect of pollution on water 
chemistry was more important at sites with lower discharges. 
Since there were no significant interseasonal differences in 
discharges, higher spring concentrations of NH4-N and NO3-
N were probably related to higher number of visitors (skiing 
season) in comparison with summer. However, no precise 
data about the number of tourists are available.

Concentrations of NO3-N and organic nitrogen signifi-
cantly influenced diatom species composition. Nutrient con-
tent (usually expressed as TDN and TDP) is often considered 
one of the main factors affecting epilithic diatom assemblag-
es (Winter & Duthie 2000, Potapova et al. 2005, Lukavský et 
al. 2006, Salomoni et al. 2006).

Other significant parameters partly explaining the vari-
ability in species data were pH, water temperature and dis-
charge. The range of pH in the dataset was relatively wide 
with the lowest values in stream sections flowing through 
peat bogs and the highest measured mainly at polluted sites. 
pH and ionic concentrations are important factors driving the 
structure of diatom assemblages (Coring 1996, Cameron et 
al. 1999, Kovácz et al. 2006, Kim et al. 2008). Responses of 
diatoms to temperature changes have been observed in sev-
eral studies (Hieber et al. 2001, Lukavský et al. 2004, Gomà 
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et al. 2005). Discharge values affected diatom assemblages 
mainly due to their impact on the total nutrient content, 
which highly depends on the volume of water in the stream 
channel.

It should be stressed that there was no significant differ-
ence in DO concentrations between unaffected sites and sites 
below sewage outflows. Since the decomposition of organic 
matter consumes DO and considerably influences the oxygen 
regime of the environment (Sládeček 1975), lower oxygen 
concentrations should be found at sites affected by pollution. 
However, this applies mainly for standing waters or rivers 
with low velocity (Allan & Castillo 2007). In the studied 
mountain streams, high velocity and low water temperature 
provided favourable conditions for the oxygen dissolution. 
Moreover, in the majority of cases, sewage water was aer-
ated during the purification process in water treatment plants.

Differences between mountain ranges

The proportion of sites permanently affected by sewage 
outflows was the same in both mountain ranges (the Giant 
Mts. – 32%, the Bohemian Forest – 31%). However, this re-
sult was biased by our selection of sites. In fact, there are 
more recreation facilities (chalets, hotels, guest-houses) in 
the Giant Mts., one of the most frequently visited areas of 
the Czech Republic. In contrast, large parts of the Bohemian 
Forest were incorporated into the military frontier zone af-
ter World War II, and remained closed to tourists during the 
whole communist period (until 1989). Due to this fact, the 
recent impact of tourism in this area is lower. Nevertheless, 
at the sites investigated, the influence of sewage pollution 
had similar effects on benthic diatom assemblages in both 
mountain ranges. The mean percentage abundances of eutra-
phentic taxa represented about one third of all counted valves 
at sites from both the Giant Mts. and the Bohemian Forest.

The Bohemian Forest had more similar diatom assem-
blages in comparison with the Giant Mountains. We assume 
that the assemblages reflect the similarity (or variability) of 
streams and their general characteristics. Thus, the differ-
ences between the mountain ranges could be explained by 
a higher heterogeneity of habitats in the Giant Mts., where, 
in contrast to the Bohemian Forest, some sites were locat-
ed above the timber line (e.g. upper part of the Bílé Labe 
River). Furthermore, differences in the extent of mountain 
glaciation during the Quarternary Ice Ages caused different 
geomorphological characteristics in each range – shallow, 
open valleys in the Bohemian Forest and deep, more iso-
lated valleys in the Giant Mts. Spatial variability has been 
shown as an important factor driving the structure of benthic 
algal assemblages assemblages (Potapova & Charles 2002, 
Soininen et al. 2004). In the study by Potapova & Charles 
(2002), up to one third of total variability in diatom species 
data was attributed solely to geographical factors. Soininen 
et al. (2004) concluded that stream diatom assemblages in-
corporated a strong spatial component, since they explained 
almost 40% of species data variation through the combined 
effect of spatial and environmental variability. Our data set 
did not contain enough relevant information (limited num-
ber of sampling sites and areas to compare, no watershed and 
stream morphology characteristics) to allow an assessment of 

impacts of spatial variability. However, since the covariates 
accounted for 61.3% of the variability in the species data, it 
is likely that the spatial component was also important for 
diatom assemblage composition.

Conclusions

We found a considerable influence of sewage outflows from 
cottages and small mountain villages on water chemistry of 
mountain streams. This impact was more intensive at sites 
with low discharges, where the dilution effect was insuffi-
cient to adequately negate the effect of the pollutants. Mark-
edly enhanced concentrations of NO3-N and organic nitrogen 
had a significant influence on changes in diatom species com-
position. Natural diatom assemblages were replaced by pol-
lution tolerant taxa that are common in lowland rivers. This 
diatom response shows that uncontrolled increases of recrea-
tion activities in these national parks might significantly al-
ter vulnerable mountain stream ecosystems, which are often 
the first recipients of pollution. Therefore, suitable measures 
should be taken (which are unfortunately often neglected) by 
the owners of recreation facilities in these mountains.

Overall, diatoms performed well as indicators of environ-
mental stress in mountain streams and diatom based biomon-
itoring should be considered an important supplementary 
method for assessing water quality in these ecosystems. 
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