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INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) are abundant soil or-
ganisms that have wide-ranging impacts on plants and 
ecosystems. About 80% of land plants form symbiotic re-
lationships with AMF (Schüßler et al. 2001), and these asso-
ciations can affect plant growth, fitness, and community di-
versity (Klironomos et al. 2000, Smith & Read 2008, Jung et 
al. 2012). AMF hyphal networks reach parts of the surround-
ing soil that plant roots cannot and transfer nutrients, such as 
phosphate and nitrogen, to the plant in exchange for carbo-
hydrates synthesized during photosynthesis (Smith & Smith 
2011). The general increase in plant fitness due to AMF was 
historically attributed solely to the improved nutrition AMF 
provide (Pfleger & Linderman 1994), but more recent stud-
ies have found that plants colonized by AMF undergo physi-
ological changes that alter their resistance to above- and 

belowground antagonists (Pozo et al. 2002, Koricheva et al. 
2009, Song et al. 2013, Vannette et al. 2013, Cameron et al. 
2013). 

AMF may influence plant defenses by interacting with 
the jasmonic acid (JA) pathway (Pozo & Azcón-Aguilar 
2007). Jasmonic acid is an essential hormone in the immune 
system of plants (Bari & Jones 2009, Pieterse et al. 2009), 
and when a plant is attacked by an insect herbivore, JA is 
produced, signaling cells to begin production of defensive 
compounds (Pozo et al. 2004). In many plants, this induced 
resistance includes the general defensive chemicals peroxi-
dase (POD), polyphenol oxidase (PPO) and protease inhibi-
tors (PI) (Farmer & Ryan 1992, Constabel & Ryan 1998, 
Moore et al. 2003), enzymes that have been shown to have 
inhibitory effects on insect herbivores. In Populus spp., POD 
inhibits herbivore growth by oxidizing phenols in the guts of 
caterpillars, damaging amino acids and denaturing proteins 
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(Barbehenn et al. 2010). The mechanism of PPO is not well 
studied, but it is thought to play a role in defense because 
of its induction by herbivores. Quinones produced from PPO 
may react with essential amino acids, causing a decrease in 
the nutritional value of the plant. Alternatively, PPO may 
oxidize phenols similarly to POD (Constabel & Barbehenn 
2008). Application of JA to tomato (Solanum lycopersicum 
L.) increased PPO activity, and these plants also reduced 
growth of the caterpillar Manduca sexta (Linnaeus, 1763), 
a Solanaceae specialist and the bioassay herbivore used in 
this study (Cipollini & Redman 1999). Protease inhibitors in-
terfere with the ability of caterpillars to digest protein by in-
hibiting protease enzymes in their gut (Green & Ryan 1972). 
Recently four serine PIs, isolated from Solanum nigrum L., 
were shown to decrease the growth of generalist caterpillars 
(Hartl et al. 2010), but effects on M. sexta are mixed: Hartl et 
al. (2010) concluded that proteinase inhibitors in S. niger do 
not affect growth, while Bosch et al. (2014) supported a role 
of induced PIs in conferring resistance against M. sexta. Tak-
en together, the primary action of these defensive enzymes 
is to inhibit the ability of herbivores to obtain nutrients from 
their host plants, but their effects on herbivores, including 
M. sexta, in experiments seems variable. 

Colonization of plant roots by AMF triggers a JA re-
sponse which may cause the plants to become sensitized to 
attack by a pathogen or herbivore (Jung et al. 2012). This is 
not surprising given that the process of colonization results 
in a plant transcriptional response with extensive overlap to 
attack by various plant antagonists (Paszkowski 2006). In 
Medicago truncatula Gaertn. (Fabaceae), a build-up of tran-
scription factors regulates the JA pathway upon coloniza-
tion; however, the defenses are not actually activated until 
an attack (Van der Ent et al. 2009). This priming response 
has been shown in multiple species including carrot (Dau-
cus carota L.), date palm (Phoenix dactylifera L.), and to-
mato (Pozo et al. 2010, Jung et al. 2012, Song et al. 2013). In 
priming the plant, AMF may help to amplify the immune re-
sponse when a wound is detected and cause a greater amount 
of defensive chemicals to be synthesized. 

Although mycorrhizal effects on induced resistance have 
been shown in several plant species, the outcomes of these 
interactions on both plants and herbivores are poorly under-
stood and have produced contradictory results (Bennett et al. 
2009, Kempel et al. 2010). The objective of this study was 
to investigate the effects of AMF on the induced defense re-
sponse in two species of Solanum (Solanaceae). Although 
these species are evolutionarily related, they may not neces-
sarily respond to AMF in the same way. In a study of my-
corrhizal growth effects, congeneric host plants frequently 
showed strong differences in response to AMF colonization 
(Wilson & Hartnett 1998). We quantified induction of three 
defensive chemicals and growth of an insect herbivore in 
plants with and without AMF. 

MATERIAL AND METHODS

Study species

Solanum ptycanthum Dunal (eastern black nightshade) is 
a widespread herbaceous native annual throughout North 

America. Solanum dulcamara L. (bittersweet nightshade) 
is a woody perennial vine, native to Eurasia and introduced 
across much of North America. In a comparative study of in-
duced defenses, S. dulcamara displayed a moderately strong 
induced response to M. sexta herbivory compared to other 
Solanaceae (Campbell & Kessler 2013). Although S. ptycan-
thum was not included in this study, the closely related S. 
nigrum’s response was similar to S. dulcamara. Both S. dul-
camara and S. nigrum are also colonized by AMF (Harley 
& Harley 1987), and previous trials had demonstrated that 
S. ptycanthum was readily colonized as well. Despite these 
similarities and their close relationship, the different growth 
forms of S. ptycanthum and S. dulcamara (herbaceous and 
woody vine, respectively) and the knowledge that congeners 
can differ in mycorrhizal response (Wilson & Hartnett 1998) 
suggested the possibility that AMF effects on induced resist-
ance could differ, justifying a comparative study between the 
two species. Seeds of both species were obtained locally in 
DeKalb, IL, USA. 

Defensive chemistry experiment

We used a factorial experimental design for each species, 
manipulating AMF presence and JA application. Seeds from 
each species were sterilized in 5% bleach solution and germi-
nated on damp filter paper in a sterile petri dish in a growth 
chamber (14 h:10 h light:dark, 30°C day, 25°C night). Each 
germinated seedling was planted in a 473 mL pot of auto-
claved soil obtained from a lawn outside the greenhouse 
where the study took place. Each pot then received either 50 
mL of unsterilized soil containing root fragments from S. pty-
canthum previously inoculated with Rhizophagus irregularis 
(Błaszk., Wubet, Renker & Buscot) C.Walker & A.Schüßler 
(formerly Glomus intraradices N.C.Schenck & G.S.Sm.) in 
gel suspension (Mycovitro, Grenada, Spain), or 50 mL of au-
toclaved soil from the same source. The previously-inoculat-
ed plants had been cultivated to produce sufficient inoculum 
for the experiment. We note that this soil also contained other 
microorganisms, but we expect these to be similar to what 
naturally colonized the experimental plants because we used 
the same soil source and the same greenhouse setting. The 
50 mL soil was mixed into the top layer of the pot before 
transplanting took place. Rhizophagus irregularis is a gener-
alist species that colonizes a wide variety of plant hosts (Öpik 
et al. 2006). Pots were placed in a greenhouse in blocks of 
four with each block containing two AMF+ and two AMF- 
plants. Plants received 14 h supplemental light in the green-
house, and the greenhouse temperature was kept above 21°C. 
The blocks were rotated weekly and each pot was watered as 
needed with distilled (DI) water three times per week. Three 
weeks after the seedlings were planted, each AMF+ pot had 
an additional 1 mL of AMF inoculum (R. irregularis in gel 
suspension) injected into the soil at the base of the plant to 
ensure AMF presence. Each sterile pot received 1 mL of DI 
water. Although we did not collect roots from plants in this 
experiment, other trials have shown that both Solanum spe-
cies are readily colonized by this R. irregularis inoculum and 
the inoculum used in the herbivore growth experiment below 
within four weeks (mean ± 1 s.e., 5.5 ± 2.6% colonization, 
vs. 0% in uninoculated plants, N. Barber, unpubl. data). Final 
sample sizes, following the death of several plants, were 41 
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S. ptycanthum (20 AMF+, 21 AMF-) and 20 S. dulcamara 
(11 AMF+, 9 AMF-). 

Six (S. ptycanthum) or eight (S. dulcamara) weeks after 
the seedlings were planted, approximately half of the plants 
from each AMF treatment were treated with jasmonic acid 
(JA) to induce a defensive response (S. ptycanthum, n = 10 
AMF+, 10 AMF-; S. dulcamara, n = 6 AMF+, 5 AMF-).  
Pure JA (Sigma-Aldrich, St. Louis, Missouri, USA) was dis-
solved in 250 µL of acetone and added to 119 mL of DI wa-
ter to make a 10 mM solution that was diluted to 1 mM in a 
spray bottle (Thaler et al. 1996). A control spray bottle con-
tained DI water and a trace amount of acetone. Plants were 
sprayed with either JA solution or DI water until all leaves 
were coated with spray, and treatments were kept separated 
during spraying and until plants dried to keep JA solution 
from drifting to control plants. Two days after the JA treat-
ment, two 0.1 g fresh leaf samples were excised from each 
plant for chemical assays and stored at -80°C. 

We measured activity of POD, PPO, and PI following 
methods of Thaler et al. (1996). POD and PPO activity was 
measured as change in absorbance over 60 s per g fresh leaf 
tissue (ΔOD/min/g), and PI was measured as percent inhibi-
tion of protease activity by the presence of leaf extract. PPO 
assays were not performed for S. ptycanthum because of 
limited leaf sample tissue. We used generalized linear mixed 
models (GLMMs) to analyze POD, PPO, and PI activity, 
treating JA treatment, AMF treatment, the JA × AMF interac-
tion as fixed factors, and block as a random factor. Models as-
sumed Gaussian error distribution and identity link function, 
and fixed factors were evaluated using likelihood ratio tests, 
starting with the interaction term. If the interaction term was 
significant, we did not test main effects. All analyses were 
carried out in R (R Development Core Team 2012) using the 
nlme() package. 

Herbivore growth experiment

To determine how AMF induced response affected an in-
sect herbivore, we repeated the previous experiment and fed 

leaves from experimental plants to Manduca sexta (Lepi-
doptera: Sphingidae), a Solanaceae specialist native to North 
America. Throughout its wide range, M. sexta feeds on a va-
riety of plants in the genus Solanum including the two plants 
in this study (Madden & Chamberlin 1945, Yamamoto & 
Fraenkel 1960). Its growth can also be affected by the de-
fensive proteins analyzed above (Cipollini & Redman 1999, 
Bosch et al. 2014), making it an appropriate bioassay organ-
ism. 

The experiment was carried out identically as above, in-
cluding the same soil source, except that there were 36 S. pty-
canthum and 40 S. dulcamara, each with half of the plants 
inoculated with R. irregularis on a perlite carrier (Myke, 
PremierTech, Rivière-du-Loup, QC, Canada) because gel in-
oculum used above was unavailable. Two days after JA treat-
ments were applied, the most recently grown leaf (or two if 
leaf was < 4 cm long) was excised through the petiole with 
a razor blade and placed in a petri dish containing moistened 
filter paper and resting on an inverted thumb tack to keep 
leaves elevated, so caterpillars could feed on either side of 
the leaf (Campbell & Kessler 2013). Eggs of M. sexta (Caro-
lina Biological Supply Co., Burlington, NC, USA), were in-
cubated in a growth chamber to hatch synchronously so that 
caterpillars were the same age and size at the start of bioas-
says. A single second-instar M. sexta was added to each petri 
dish and allowed to feed on the leaves for 48 hours (Campbell 
& Kessler 2013) in the growth chamber (14 h:10 h light:dark, 
30°C day, 25°C night). The caterpillars were removed from 
the leaves for 15 hours to void their gut before each caterpil-
lar’s wet mass was recorded. We analyzed final caterpillar 
mass using GLMs as above. 

RESULTS

Defensive chemistry experiment

Treatments affected defenses in both plant species. In S. pty-
canthum JA induced POD activity (table 1, fig. 1A) but did 
not significantly change levels of PI activity (fig. 1B). AMF 

Solanum ptycanthum

POD PPO PI Herbivore mass

χ2 P χ2 P χ2 P χ2 P

JA 3.88 0.049 – – 1.56 0.211 10.96 < 0.001
AMF 0.18 0.672 – – 0.11 0.738 1.95 0.163
AMF × JA 1.56 0.212 – – 1.90 0.168 2.57 0.109

Solanum dulcamara

POD PPO PI Herbivore mass

χ2 P χ2 P χ2 P χ2 P

JA 0.68 0.410 – – 3.05 0.081 3.64 0.057
AMF 7.56 0.006 – – 4.83 0.028 2.51 0.113
AMF × JA 2.98 0.085 7.28 0.007 1.96 0.161 2.54 0.111

Table 1 – Results of GLMM analyses of experimental treatments.
Models analysed activity of peroxidase (POD), polyphenol oxidases (PPO), and protease inhibitors (PI) in Solanum ptycanthum and 
S. dulcamara, and growth of M. sexta bioassay caterpillars. Fixed factors were evaluated using single degree of freedom likelihood ratio tests 
compared to a χ2 distribution.  Factors with P < 0.05 are shown in bold.  
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did not affect defenses, and there was no interaction between 
the two treatments. 

In S. dulcamara, there was a significant interaction be-
tween AMF and JA for PPO and a marginally significant in-
teraction for POD (table 1, fig. 2), but the pattern of interac-
tion was different for these responses. AMF increased POD 
response, and the response may be marginally stronger with 
JA application (fig. 2A). But JA application reduced PPO 
activity when AMF was absent and had no effect on AMF+ 

Figure 1 – Effects of AMF and jasmonic acid (JA) treatments on: A, 
peroxidase activity (POD); and B, percent protease inhibition (PI) 
in Solanum ptycanthum. Peroxidase activity is expressed in ΔOD/
min/g leaf tissue, and values in both figures are based on estimated 
model coefficients ± 1 s.e. 

plants (fig. 2C). The pattern for PI activity was similar to 
POD, but the interaction was not significant; JA increased PI 
activity, while AMF had a marginal effect (table 1, fig. 2B). 

Herbivore growth experiment

In S. ptycanthum, application of JA significantly reduced cat-
erpillar mass, but AMF had no effect and there was no in-
teraction (table 1, fig. 3A). Similarly, JA marginally reduced 
caterpillar mass when fed S. dulcamara but there were no 
other effects (fig. 3B). 

DISCUSSION

Colonization by AMF had variable effects on chemical de-
fenses of Solanum spp., but colonization by AMF did not 
affect caterpillar growth. Application of JA to simulate her-
bivory and cause chemical defense induction affected chemi-
cal defense production and significantly reduced caterpillar 
growth in S. ptycanthum, with a trend in the same direction 
for S. dulcamara. Thus the effect of AMF on plant induced 
responses did not directly translate to increased resistance 
against herbivores, but AMF do have the potential to affect 
both constitutive and induced levels of defensive proteins, 
depending on the host plant species.

POD and PI responses in S. dulcamara to AMF were sim-
ilar and followed predictions of AMF priming hypotheses, 
i.e., levels of both defenses were highest on induced plants 
with mycorrhizal colonization, although in neither case was 
the interactive effect significant. These results indicate that 
AMF can enhance plant defenses and, for POD, where there 
was a significant JA × AMF interaction, possibly enhance the 
induced response. This potential priming effect is consistent 
with studies in S. lycopersicum (tomato), in which transcrip-
tion of PI genes following herbivory was greater in plants 
that had been inoculated with AMF than non-mycorrhizal to-
mato plants (Song et al. 2013). 

JA application surprisingly reduced PPO in non-mycor-
rhizal S. dulcamara plants, and levels were similar for JA-
treated and untreated mycorrhizal plants. In a previous study 
of tomato, PPO induction was strongest in response to feed-
ing by the generalist herbivore Spodoptera exigua (Hübner, 
1808), apparently due to a chemical elicitor in the insect’s 
saliva (Bosch et al. 2014). The absence of this elicitor may 
partially explain the result of our study, but the elicitor was 
also absent in a tomato experiment that documented PPO in-
duction by JA (Thaler et al. 1996). In two cases there was a 
main effect of JA on defenses with no mycorrhizal interac-
tion: for POD in S. ptycanthum and PI in S. dulcamara the 
JA elicited an expected response with increased levels of de-
fenses in JA-treated plants, which also does not support the 
AMF-priming hypothesis. 

Despite AMF influences on defenses, caterpillar growth 
was unaffected by mycorrhizal inoculation. This contrasts a 
study of six different species representing several plant fami-
lies, in which there was a consistent decrease in herbivore 
performance on plants inoculated with AMF after induction 
of defenses, with a significant interaction between AMF and 
induction similar to our results observed in several species 
(Kempel et al. 2010). In our study, JA treatments, however, 
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◄ Figure 2 – Effects of AMF and jasmonic acid (JA) treatments 
on: A, peroxidase activity (POD); B, protease inhibitor activity (PI); 
and C, polyphenol oxidase activity (PPO) in Solanum dulcamara. 
Peroxidase and polyphenol oxidase activities are expressed in ΔOD/
min/g leaf tissue. Values are based on estimated model coefficients 
± 1 s.e.

▲ Figure 3 – Effects of AMF and jasmonic acid (JA) treatments 
on growth of Manducta sexta bioassay caterpillars in: A, Solanum 
ptycanthum; and B, S. dulcamara. Values are based on estimated 
model coefficients ± 1 s.e.
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did reduce caterpillar growth, and the effect was significant 
in S. ptycanthum, where JA application also triggered higher 
levels of POD activity. Herbivore growth was greater, and 
the JA effect on defenses was weaker, on S. dulcamara. Thus 
herbivore growth responses match treatment effects on POD 
in S. ptycanthum but do not correspond to defenses in S. dul-
camara. The relative importance of these three chemical 
defenses for defense against herbivory, and their responses 
to other biotic interactions, appear to differ, even among the 
congeneric plant species in this study. 

The fact that AMF inoculation affected the defenses 
measured here in S. dulcamara but did not influence herbi-
vore growth suggests that additional resistance mechanisms 
may be important for M. sexta when feeding on S. dulca-
mara. Solanaceae produce secondary compounds such as al-
kaloids (Evans 1979), which we did not measure. However, 
M.sexta is a Solanaceae specialist and has high tolerance for 
alkaloids such as nicotine (Wink & Theile 2002). Although 
using an herbivore bioassay provides a more comprehen-
sive assessment of resistance than measuring individual 
plant traits, growth effects alone may not reflect all resist-
ance mechanisms. For example, protease inhibitors may also 
affect herbivores’ abilities to avoid predation, enhancing in-
direct defenses (Schuman et al. 2012), which would not be 
apparent in our greenhouse study. 

Mycorrhizal symbiosis influenced defenses of S. dulca-
mara, but we found no effect on the closely related S. pty-
canthum. Clearly AMF effects on constitutive and induced 
plant defenses are species-specific, emphasizing the context 
dependency of direct and indirect interactions between soil 
fungi, plants, and insect herbivores and the necessity of fur-
ther study with a variety of plant species, both among and 
within plant families (Gehring & Bennett 2009). Further-
more, these opposing effects may result from differences in 
functional traits, as variation in plant traits can be related to 
differential colonization by AMF in other species (Wilson 
& Hartnett 1998, Reinhart et al. 2012). While S. dulcamara 
and S. ptycanthum belong to closely related clades (Weese 
& Bohs 2007), they have different growth forms: S. dulca-
mara is a perennial semi-woody vine, whereas S. ptycanthum 
is an annual herbaceous forb. Perennial species often show 
stronger responses to AMF than annual plants, and mycorrhi-
zal diversity may be greater in their roots (Gange et al. 1993, 
Alguacil et al. 2012). Plants with contrasting growth forms, 
such as herbaceous or woody, also have been shown to differ 
in their responsiveness to AMF, with woody and perennial 
species frequently exhibiting greater growth benefits from 
mycorrhizal association (Wilson & Hartnett 1998, Pérez & 
Urcelay 2009). 

The divergent traits and life history strategies displayed 
by S. dulcamara and S. ptycanthum may be associated with 
dissimilar interactions with herbivores and different respon-
siveness to AMF, contributing to the differences that we ob-
served. In the future, studying mycorrhizal effects on plant 
defense in multiple species, accounting for phylogeny (Pagel 
1999), would make it possible to determine if particular plant 
life history traits are associated with increased chemical de-
fenses or priming. 

Members of Solanaceae represent important agricultural 
crops, such as tomato, potato, eggplant, and peppers. These 
and other solanaceous crops occupy tens of millions of hec-
tares of cropland (Samuels 2015). Yields in these crops are 
frequently reduced by insect pests, and effective pest con-
trol can require large inputs of insecticides (Alyokhin et al. 
2008). Continuing studies to understanding how AMF affect 
resistance against antagonists in both wild and domesticated 
Solanaceae species may help in the development of novel in-
tegrated pest management strategies that incorporate micro-
bial symbionts as a way to minimize the use and negative side 
effects of chemical pesticides (Burketová et al. 2015). 
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