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Background — Parasitic plants are functionally specialized to acquire at least some essential resources
from other plants via specialized organs called haustoria. Parasitism evolved 12 times independently in the
evolution of angiosperms of which approximately 1% (4500 species) are parasitic. Not only are parasitic
plants diverse in terms of evolutionary origins but also in terms of their physiological functioning and
ecological behaviour.

Methods — Here, I review the importance of principal functional traits which underlie the physiology and
ecology of individual parasitic plants. These include the ability to perform photosynthesis, anatomical
details of the vascular connection to the host determining the quality of resources acquired from the host,
location of the haustoria on the host, which is closely connected with the parasite life form, and the mode
of germination (either triggered by environmental condition or induced by presence of host roots).
Results and conclusions — Based on the distribution of all these traits in parasitic plants, I introduce
their functional classification into root hemiparasites, root holoparasites, stem parasites and endophytic
parasites. In addition to the classification, I also present an evolutionary hypothesis explaining the
evolution of advanced parasitic plant forms from root hemiparasites. This hypothesis is based on ecological
constraints from which the parasites are released with increasing ability to acquire resources from the host.
This evolutionary process also implies increasing host specificity which imposes new constraints on the
ability to establish host connection. This explains the evolutionary stability of photosynthetic hemiparasites
and their species richness which is one order of magnitude higher than that of holoparasites.

Key words — Ecology, evolution, haustorium, hemiparasite, germination, mistletoe, Orobanchaceae,
parasitic plant, Santalales.

INTRODUCTION

Parasitic plants are a specialized plant functional group de-
fined by parasitic acquisition of at least some essential re-
sources from other plants. The parasitic resource acquisition
proceeds via haustoria, specialized organs which penetrate
host vascular bundles. Parasitic plants comprise approxi-
mately 4500 species which accounts for c. 1% of angio-
sperms (Heide-Jorgensen 2008, Nickrent 2012). Parasitism
evolved several times independently during angiosperm evo-
lution (Barkman et al. 2007, Naumann et al. 2013). There-
fore, parasitic plants do not form a monophyletic group but
are defined functionally by their physiology and ecological
interactions, which include parasitic uptake of resources and
interaction with other plant species. However, individual
species differ widely in mechanisms of parasitism and other
details of their biology.

A distinct functional and evolutionary difference exists
between hemiparasites, which retain photosynthetic activ-
ity, and non-green holoparasites, which fully depend on their

hosts for all essential resources. Parasitic plants nevertheless
display many other functional traits that are largely variable
among species and underlie biological differences among
them. The location of the attachment to the host defines root
and stem parasites and substantial variation in growth forms
exists even within these groups. Either induced by presence
of the host or relying on environmental or internal germina-
tion signals, seed germination mechanisms determine the
strategy of establishment on the host. Anatomical details
of the connection to the host vascular bundles underpin the
quality and quantity of resources acquired from the host.

Parasitism evolved twelve times during angiosperm evo-
lution (fig. 1; Barkman et al. 2007, Nickrent et al. 2005). In-
dividual independent lineages largely differ in size (number
of species), phylogenetic age and the degree of trophic spe-
cialization (Barkman et al. 2007, Nickrent 2012, Naumann
et al. 2013). Of these, Orobanchaceae and Santalales are
the largest monophyletic groups of parasitic plants, both of
which also contain both hemi- and holoparasites. By contrast
all the other lineages are small in terms of number of species
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and genera and uniform in terms of the trophic strategy of
their species (table 1, fig. 1). Many of these small groups are
holoparasitic and display a highly specialized morphology
including extreme modifications of flowers.

In this review, I introduce the key functional traits of par-
asitic plants and explain their significance. On the basis of
functional trait distribution among individual phylogenetic
lineages or functionally defined groups within them, I pro-
pose a new functional classification of parasitic plants. This
is aimed to fill a gap in current literature with the last com-
prehensive review on functional biology of parasitic plants
published more than a decade ago (Nickrent 2002). Since
then, there has been a great advancement in reconstruction
of phylogenetic relations (in terms of both phylogenetic
placement of parasitic plants: Nickrent et al. 2005, Barkman
et al. 2007, Naumann et al. 2013, and phylogenetic relations
within particular lineages, e.g. Nickrent et al. 2010, Garcia et
al. 2014, McNeal et al. 2013) and other aspects of parasitic
plants, e.g. ecophysiology (Irving & Cameron 2009, Bell &
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Adams 2011, Tésitel et al. 2015) or reproductive biology
(Bellot & Renner 2013). In addition, a book describing bio-
logical features of many parasitic plant species of all phylo-
genetic lineages has been published (Heide-Jorgensen 2008).
A review on key functional aspects of parasitic plants as a
whole and considering the evolutionary perspective is, how-
ever, still missing.

KEY FUNCTIONAL TRAITS OF PARASITIC PLANTS

Photosynthesis and carbon nutrition

Photosynthesis is generally viewed as a principal charac-
teristic of land plants. It uses light as the energy source for
the chemical process in which carbon in CO, is reduced to
organic substances. This makes light the principal resource
for plants and competition for light the dominant interac-
tion occurring between plant individuals. Deficiency of this
principal resource also prevents photosynthetic plants from

inhabiting dark habitats. Holoparasitic species that lack the
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Figure 1 — Phylogenetic origins of parasitic angiosperms. The relationships among monophyletic parasitic plant lineages are based on APG
III (2009). Functional classification of species of each monophyletic group (see fig. 2 for details) together with corresponding estimates of

number of species (table 1) is illustrated by colour squares.
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photosynthetic ability and essentially acquire all organic
carbon from the host represent an exception of this rule (to-
gether with fully mycoheterotrophic plants; Selosse & Roy
2009).

Most parasitic species are hemiparasites with functional
photosynthesis (table 1, fig. 1). The efficiency of their photo-
synthetic activity can vary largely, not only between species
but also within species depending on host quality and envi-
ronmental conditions (Cechin & Press 1993, Seel & Press
1994, Radomiljac et al. 1999a, Strong et al. 2000, T¢sitel et
al. 2015). In general, hemiparasite photosynthesis can vary
from levels hardly exceeding the compensation point to
levels comparable to those of non-parasitic plants. Despite
possibly efficient photosynthesis, hemiparasites uptake or-
ganic carbon from the host in the form of xylem-mobile or-
ganic elements (Té&Sitel et al. 2010a, Bell & Adams 2011).
This host-derived carbon can substantially contribute to
hemiparasite biomass. Nevertheless, the importance of host-
derived carbon as an energy resource seems highest when
the hemiparasite’s own photosynthesis is limited, either be-
cause of competition for light or inefficient photochemistry
caused by stress such as mineral nutrient deficiency (T¢Sitel
et al. 2015). The host-derived carbon can thus be viewed as a
backup resource for hemiparasites.

Some hemiparasitic species are non-green and thus com-
pletely dependent on their host during the initial period of
their life. Such a strategy evolved at least three times inde-
pendently in the Orobanchaceae. It is typical of closely relat-
ed Striga and Alectra species, which evolved dust seeds with
minimal reserves, thus requiring immediate contact with host
roots after germination (Dorr 1997, Irving & Cameron 2009,
Westwood et al. 2010). By contrast, the life cycles of Tozzia
and perennial species of Rhynchocorys include a long-term
underground holoparasitic stage (which evolved indepen-
dently in these two genera) and they produce green photo-
synthetic shoots only for the purpose of sexual reproduction
(Tésitel et al. 2010b). In all of these cases, the holoparasite
stage occurs early in the ontogeny and this ability to acquire
all necessary resources is likely to substantially increase es-
tablishment success in communities with intense competi-
tion for light. Seedling establishment of related hemiparasitic
species not displaying such holoparasite stages tends to be
the most significant factor limiting their occurrence in com-
petitive environments (T¢Sitel et al. 2011, 2013).

Several intermediate strategies between hemi- and holo-
parasitism can be distinguished in parasitic plants. Species
of the genus Cuscuta are functionally holoparasitic and ac-
quire all saccharides from the host via phloem connections,
but most of them display rudimentary photosynthetic activity
(Hibberd et al. 1998a, Clayson et al. 2014) and their plastid
genome evolution is functionally constrained (McNeal et al.
2007). Despite its low intensity and efficiency (Hibberd et
al. 1998a), photosynthetic activity plays an important role
in the biosynthesis of lipids which serve as energy reserves.
These are stored in Cuscuta seeds and used by seedlings
actively searching for suitable host stems in their surround-
ings (McNeal et al. 2007, Svubova et al. 2013). Similarly, in
mistletoe species of the genus Arceuthobium (Viscaceae), the
limited photosynthesis produces assimilates supplementing
host-derived carbon in nutrition of exophytic shoots bearing
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flowers and fruits (Miller & Tocher 1975), while extensive
endophytic structures are completely dependent on host car-
bon (Hull & Leonard 1964a, 1964b). In summary, a para-
site’s own photosynthetic activity plays an important role in
providing resources for sexual reproduction in all species on
the edge between hemi- and holoparasitism. That is likely to
be the cause why maintaining even a rudimentary and inef-
ficient photosynthetic activity is evolutionarily stable despite
efficient carbon uptake from the host, which generally meets
the requirements for vegetative growth of the adult parasite.

Interestingly, all hemiparasitic mistletoes (e.g. Vis-
cum album) have evolved photosynthesis in the endosperm
(Heide-Jargensen 2008, Nickrent & Garcia 2009), which
is highly unusual within the angiosperms. This adaptation
helps the seedling to penetrate through possibly thick host
bark, which requires a large amount of energy. This unusual
location of photosynthesis thus facilitates the establishment
of a parasite with a free pre-attachment stage, which is quite
similar to the situation in Cuscuta.

Anatomy of haustorial connections and resource uptake
from the host

The details of the anatomical connection to host vascular
bundles hidden in the haustorium are as important to para-
sitic plant biology as the ability to photosynthesize. All para-
sitic plant species have access to host xylem, but only some
of them have the ability to also withdraw nutrients from the
phloem (table 1; Hibberd & Jeschke 2001, Irving & Cam-
eron 2009). The anatomy of the vascular connection to the
host underlies not only the quality and quantity of resources
acquired, but is also associated with host specificity. The im-
portance of this trait led to a suggestion of a functional clas-
sification of parasitic plants into xylem- and phloem-feeders
instead of hemi- and holoparasites (Irving & Cameron 2009).

Haustorial anatomy is indeed largely correlated with the
ability to photosynthesize or with photosynthetic efficiency.
Typical hemiparasites with efficient photosynthesis (hemipa-
rasitic Santalales, Orobanchaceae, Krameriaceae) access
host xylem only (table 1). This provides parasitic uptake
of mineral nutrients and water but only a limited amount of
organic carbon available as xylem-mobile organic elements
(Bell & Adams 2011, T&sitel et al. 2010a). Thus, photosyn-
thesis appears to be a requirement for an efficient xylem-
feeding strategy. This is however not true for the holopara-
sites of the genera Lathraea and Boschniakia, which display
a holoparasitic xylem-only feeding strategy (Kuijt & Toth
1985, Ziegler 1955). In Lathraea, this is underpinned by ac-
quisition of xylem-mobile organic elements and the ability
to actively secrete excess water using hydathode trichomes
located on underground leaf scales (Renaudin & Garrigues
1967, Svétlikova et al. 2015, Té&sitel & Tesafova 2013, We-
ber 1975). Although providing only a limited spectrum of
resources, the xylem parasitism has a largely mechanical na-
ture; i.e. penetrating a host vessel can be viewed as a simple
penetration of a dead tube in which resources are transport-
ed. Establishment of a xylem connection usually imposes lit-
tle constraint on the host ranges of xylem-feeding parasites
(Gibson & Watkinson 1989, Radomiljac et al. 1999b, Suet-
sugu et al. 2008), although host defence reactions based on

10

root tissue lignification were identified as a cause of distinct
host preferences in some hemiparasitic species (Cameron et
al. 2006).

In holoparasites, parasitic uptake of phloem sap rich in
assimilates can cover the demand for carbohydrates not pro-
vided by autonomous photosynthesis. Such independence
from photosynthesis presents the main advantage of phloem
parasitism, releasing the parasites from competition for light.
In contrast to xylem, phloem is a living tissue. Its parasit-
ism thus requires biochemical compatibility between host
and parasite (Thorogood & Hiscock 2010). Therefore, phlo-
em-feeders tend to be more host-specific (Heide-Jorgensen
2008, Thorogood et al. 2009). Their occurrence is conse-
quently limited by their ability to find a compatible host.
Although phloem connections are closely associated with
holoparasitism, their presence in haustoria of some holo-
parasitic lineages (Apodanthaceae, Hydnoraceae, Cynomori-
aceae, Mitrastemonaceae) remains to be confirmed (table 1).
The existence of the holoparasitic xylem-feeding Lathraea
and Boschniakia species (see above) prevents extrapolating
phloem parasitism to other lineages based just on the lack of
photosynthesis.

Growth habit and location of the haustoria on the host

Parasitic plants display a variety of growth habits (table 1).
Root-parasites attach to the host below ground and seem to
grow independently of the host from the above-ground per-
spective. Stem parasites that attach to the host above ground
can be further divided into mistletoes and parasitic vines.
Mistletoes are parasitic epiphytic shrubs, which attach to the
host stem immediately after germination. Parasitic vines are
herbs which germinate on the ground and their seedling at-
taches to the host stems after a certain period of independent
growth, which can last from a few days up to several months
(Heide-Jargensen 2008). The most extreme modification is
represented by parasitic plants which are completely endo-
phytic at maturity except for their reproductive organs (endo-
phytic parasites; table 1). These parasites produce haustoria
only after germination when entering the host.

The location of the haustoria on the host is an important
trait which has been used to classify parasitic plants into
the functional groups of root and stem parasites (Nickrent
2002). It is really important for photosynthetic hemipara-
sites, which, if established from an epiphytic seedling, ac-
quire not only the resources from xylem but also a position
in the canopy with much more favourable light conditions
compared to the understory. In contrast, the position of haus-
toria makes little difference to non-photosynthetic parasites
that do not use light as a resource. Moreover, the endophytic
parasites might enter host roots or stems during their estab-
lishment and then spread throughout the host body (e.g. in
Rafflesia; Heide-Jorgensen 2008). Considering the whole
diversity of growth habits of parasitic plants might be more
ecologically meaningful than just using the location of the
haustoria. Nevertheless, the location of haustoria is a simple
binary trait more suitable when multiple traits are analysed,
which is why I retain it in a multitrait analysis (fig. 2).

The evolution of parasitic plant growth form started from
perennial hemiparasitic woody plants (shrubs or trees) in



Santalales (Nickrent et al. 2010) and Krameriaceae (Carlquist
2005). The Orobanchaceae contain few woody taxa (shrubs:
Brandisia, Asepalum, Cyclocheilon, Pterygiella suffruticosa;
woody herbs or subshrubs: Hedbergia, Nothobartsia, Sopu-
bia, Graderia; Morawetz et al. 2010, TéSitel et al. 2010b,
Dong et al. 2013, McNeal et al. 2013). These are mostly
phylogenetically unrelated and many of them form either
isolated lineages within the family (Brandisia; McNeal et al.
2013) or sister groups to the major clades within the family
(Cyclocheilon, Asepalum, Sopubia, Graderia; Morawetz et
al. 2010; in part also Pterygiella; Dong et al. 2013). Such
an evolutionary pattern together with the woody habit of the
Paulowniaceae, the sister family to Orobanchaceae (APG III
2009), may suggest a possibility of a hemiparasitic woody
ancestor also in Orobanchaceae. Given the current knowl-
edge, it difficult to conclude whether the first plant which
evolved hemiparasitism in this family was a shrub or an
herbaceous plant. By contrast, it is certain that the parasitic
vines of the genus Cuscuta evolved from non-woody Con-
volvulaceae vines (Garcia et al. 2014). Other groups of para-
sitic plants are too distant from their non-parasitic relatives
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and their vegetative morphology is strongly modified, which
prevents drawing conclusions on their growth form evolu-
tion.

Germination and establishment

Seed germination and establishment of the connection to the
host represent critical points of the parasitic plant life cycle.
Individual parasitic plant species have adopted one of two
distinct germination strategies. Germination can be either
autonomous or induced by chemical signals released by the
host.

The autonomous germination might be started just by
conditions favourable for seedling survival (e.g. sufficient
humidity) or might require specific environmental germina-
tion clues to break seed dormancy. This is well-documented
for some temperate hemiparasitic Orobanchaceae (e.g. Rhi-
nanthus, Melampyrum, Odontites, Euphrasia, Cordylanthus,
Orthocarpus, some species of Castilleja or Agalinis) which
require variable periods of low temperature to initiate germi-
nation (Royal Botanical Gardens Kew 2015). This ensures
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Figure 2 — Principal component analysis plot displaying the functional similarities among individual parasitic angiosperm lineages. The
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that germination occurs in periods when most plant species
are dormant and thus the seedlings at least in part avoid
above-ground competitive pressure from the surrounding
vegetation (T¢Sitel et al. 2011). Germination dynamics in re-
sponse to temperature can be largely variable among closely
related species and to a lesser extent also among populations
of a single species, as documented for Rhinanthus by ter Borg
(2005). Attachment to the host occurs after an independent
seedling stage which can last up to many weeks. This ger-
mination strategy is typical of many root hemiparasites and
stem parasites, seedlings of which can support their growth
by own photosynthesis and/or abundant seed reserves. De-
spite limited development of the root-hemiparasitic seedling
root system, it still allows foraging for a suitable host in a
sizeable volume of soil. Combined with low host specificity,
this strategy provides a good chance to find a suitable host.
In mistletoes, the chance of establishing a host connection
is increased by specialized dispersal mechanisms (mostly
endozoochory by birds, but also explosive seed dispersal in
Arceuthobium) and sticky seeds. Seedlings of parasitic vines
use all their energy to forage for a host above-ground across
a distance of tens of centimetres. Active foraging based on
volatiles produced by the host has been demonstrated in Cus-
cuta (Koch et al. 2004) together with selection of hosts with
higher nutritional status (Kelly 1992).

Host induction of germination combined with long-term
seed dormancy can be expected in all host-specific parasitic
plants as a trait reducing wasteful seed germination in the
absence of a suitable host. Still, it has only been documented
in a few species. The best-known examples include dust-
seeded Orobanchaceae such as Striga, Alectra, Orobanche
and Phelipanche. Their germination is induced by strigolac-
tones, plant hormones responsible for signalling with arbus-
cular mycorhizal fungi (Akiyama et al. 2005, Cardoso et al.
2011), but also affecting plant architecture (Gomez-Roldan
et al. 2008, Cardoso et al. 2011). In the Orobanchaceae,
host-induced germination was also reported in Lathraea and
Epifagus (Heinricher 1894, Williams & Zuck 1986 reviewed
in Bolin et al. 2009). Bolin et al. (2009) experimentally
demonstrated host-induced germination in Hydnora (Hyd-
noraceae) and reviewed this phenomenon in Bdallophytum
(Cytinaceae), Dactylanthus (Mystropetalaceae; formerly
Balanophoraceae; Su et al. 2015) and Pholisma (Boragi-
naceae - Lenooideae). Despite the great importance for un-
derstanding biology of parasitic plants, data on germination
of many holoparasites and in particular endophytic holopara-
sites are still largely missing (table 1).

Another important establishment trait is the ability to
form a primary (terminal) haustorium. Haustoria of this
type are produced by seedlings of mistletoes and some Oro-
bachaceae (Striga, Orobanche) to establish the first contact
with the host. By contrast, most parasitic plant species pro-
duce only secondary (lateral) haustoria, which is typical of
species with self-sustained seedling including root-hemipa-
rasitic Santalales, parasitic vines and most Orobanchaceae
(table 1). It has been suggested that the ability to form a pri-
mary haustorium is closely related to host-induced germina-
tion, as is the case in some Orobanchaceae such as Striga
and Orobanche (Westwood et al. 2010). However, this is
not true in mistletoes, which produce a primary haustorium
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but their seedlings germinate autonomously (table 1), nor
in root-parasitic Lathraea, which requires host germination
cues but does not produce a primary haustorium (Ziegler
1955). Functional roles and evolutionary pathways of these
establishment traits can thus be diverse, making such gener-
alizations difficult. Unfortunately, the difficulty in observing
germination and initial life stages of many parasitic plants
results in a large data deficiency for this trait (table 1).

FUNCTIONAL CLASSIFICATION OF PARASITIC
PLANTS

A principal component analysis (PCA) was performed to
summarize functional trait distribution across parasitic
plant lineages and establish a new functional classification
of parasitic plants (fig. 2). On the basis of the PCA results,
it is possible to define four functional groups, located in the
quadrants of the first two principal components: root hemip-
arasites, root holoparasites, stem parasites and endophytic
parasites. The major advantage of this classification is that
it is based on variability of all key functional traits across all
parasitic angiosperms. Every parasitic plant species can thus
be assigned to one of the functional groups based on current
knowledge of their biology. The functional groups are not
homogeneous (i.e. a certain variability in functional traits is
present within the group) but that is always the case in such
categories comprising species of different evolutionary line-
ages.

Probably the largest heterogeneity is present in stem par-
asites including both mistletoes and parasitic vines. There are
however substantial differences even between functionally
similar Cuscuta and Cassytha (presence/absence of phloem
connections in haustoria, differential degree of photosyn-
thetic ability) which justifies the concept of a single heterog-
enous functional group of stem parasites.

Endophytic parasites are newly distinguished here as a
functional group of parasitic plants. They are defined by the
dominance of an endophytic stage in their life cycle. Typical-
ly, these species form a haustorium immediately after germi-
nation to penetrate the host. They then form extensive endo-
phytic structures and produce exophytes only for flowering
and seed production. The exophytes may be just flowers or
inflorescences (Rafflesiaceae, Apodanthaceae, Cytinaceae),
or larger shoots (most endophytic mistletoes). There is an en-
tire gradient of parasitic strategies and host dependence in
mistletoes. A majority of the species attach to their host by
haustoria, each of which forms a single connection to host
vascular bundles (species with epicortical roots, clasping un-
ions, and wood roses; Calvin & Wilson 2006, Mathiasen et
al. 2008). These can be clearly classified as stem parasites.
Other species produce endophytic bark strands with multiple
connections to the host vasculature. The extent of the endo-
phytic system is rather limited and smaller in size compared
to the exophytic shoots in many species (e.g. Viscum album;
Zuber 2004). These species are considered stem-parasitic
mistletoes here. By contrast, other species may cause sys-
temic infections and the endophyte of some of them is even
isophasic, i.e. it proliferates into the apical buds of the hosts
and displays growth synchrony with the host (Calvin & Wil-
son 1996, Kuijt 2011, Lye 2006). Photosynthesis tends to be



reduced in these species and they acquire most of the organic
carbon from the host (Hull & Leonard 1964a, 1964b). Such
species are considered as endophytic mistletoes here. Typical
representatives include most Arceuthobium species (e.g. A.
americanum, A. pusillum, A. douglasi; Lye 2006), Phoraden-
dron perredactum (Kuijt 2011), Viscum minimum of Viscace-
ac (Engler & Krause 1908), Phacellaria (Amphorogynaceac;
Nickrent et al. 2010) and Tristerix aphyllus (Loranthaceae;
Mauseth et al. 1984, Kraus et al. 1995, Mauseth 1990). Most
Arceuthobium species that do not show isophasic growth still
have a large endophyte and a low photosynthetic capacity
and can be assigned to this group. Arceuthobium oxycedri,
which is seemingly the most photosynthetic species of the
genus acquiring c¢. 50% of its carbon by its own photosynthe-
sis (Hawksworth & Wiens 1996, Rey et al. 1991), is difficult
to classify and should be probably considered a transitional
case between stem and endophytic parasites.

Root hemiparasites are considered a single group here
without further classification to facultative and obligate as
suggested by Nickrent (2002). Facultative parasitism, which,
in a strict ecological sense, means the ability to keep per-
capita population growth rate » > 0 in the absence of a host,
is very rare in parasitic plants and difficult to demonstrate. It
probably exists e.g. in Triphysaria (Westwood et al. 2010)
and Odontites vernus (Weber 1981, Geppert 2012). Most of
the species suggested as facultative hemiparasites (Nickrent
2002) are nevertheless unable to survive, produce flowers
or their growth is largely reduced and flower production is
minute in host-free cultivation (Mann & Musselmann 1981,
Matthies 1997, Weber 1981) unless high doses of mineral
nutrients are applied (Mann & Musselmann 1981). In addi-
tion, no hemiparasite has been reported to grow without a
host under natural conditions (Heide-Jorgensen 2013). By
contrast, even Striga asiatica, member of a genus comprising
typical “obligate root-hemiparasites” (Westwood et al. 2010)
can grow and flower without host in an axenic culture if pro-
vided with nutrients and germination stimulants (Yoshida &
Shirasu 2012). The cultivation studies hence demonstrated
that both “facultative” and “obligate” root-hemiparasites can
grow and reproduce under artificial conditions, although the
latter require a higher level of condition control. In summa-
ry, there is apparently a large variability in host-dependence
among hemiparasitic species. Triphysaria and Odontites
discussed above represent one extreme root-hemiparasitism
while species with holoparasitic seedlings, like Striga, Alec-
tra, Tozzia and the perennial species of Rhynchocorys repre-
sent the other. Most of the other root-hemiparasitic species
lie between these extremes and it is difficult to make a clear
border line between “facultative” and “obligate” root hemip-
arasites. Therefore, I suggest viewing root hemiparasites as a
single, yet variable functional group, members of which are
dependent on their hosts to various extents.

COMMUNITY ECOLOGY AND HABITAT
PREFERENCES OF PARASITIC PLANTS

Parasitic plants occur in all terrestrial ecosystems ranging
from tropical rainforests and hot deserts to temperate grass-
lands and arctic tundra (Heide-Jorgensen 2008). Numerous
species are known to act as keystone species in the ecosys-
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tems they inhabit. This is based on their specialized nutri-
tional or reproductive strategies interacting with organisms
in many different ways (Press & Phoenix 2005). The most
important mechanisms of the ecosystem effects include: (1)
harm inflicted to the host species by parasitism, which can
modify competitive relations in plant communities (Cam-
eron et al. 2005, Li et al. 2012, Prider et al. 2009, Shen et
al. 2005); (2) effects on nutrient cycling via modifications
of soil microbial community structure (Bardgett et al. 20006,
Quested et al. 2003, Spasojevic & Suding 2011) and (3) pro-
vision of important resources for animals, such as birds or
insects (Watson 2001, Watson et al. 2011, Watson & Herring
2012).

Despite the general omnipresence of parasitic plants in
terrestrial habitats, individual species, parasitic plant line-
ages and functional groups often show contrasting habitat
preferences (table 1). The low number of independent evo-
lutionary origins of parasitic plants does not allow a formal
testing of these differences and relating them to functional
traits or groups. Still, some patterns are clear and can be in-
terpreted using the knowledge of ecology and physiology of
individual parasitic plant groups.

The greatest benefit of parasitism for root hemiparasites
lies in the uptake of mineral nutrients, although they also
acquire water and organic carbon from the host (T&Sitel et
al. 2015). Hemiparasites require light to transform this ben-
efit into fitness by photoassimilation. This implies that root
hemiparasitism should be most advantageous in habitats
where mineral nutrients are limiting and light is available in
abundance (Matthies 1995, Té&sitel et al. 2011). It is not so
straightforward, since the hemiparasites’ growth can be in-
creased by abundant mineral nutrients to an extent similar to
non-parasitic plants and light deficiency may be in part com-
pensated by heterotrophic carbon acquisition (Té&Sitel et al.
2015). Still, root-hemiparasitism provides only limited ad-
vantages in habitats such as closed canopy forest where com-
petition for light is the major ecological constraint restricting
recruitment ability (e.g. Whitmore 1990). That is why open
habitats host the greatest diversity of root hemiparasites.

This association of root hemiparasites with open habi-
tats is clear in Orobanchaceae root-hemiparasitic species of
which occur mostly in grasslands and only a tiny fraction
them (such as some species of Melampyrum) grow in closed-
canopy forests. Similarly, most Krameria species are restrict-
ed to open habitats (though e.g. K. lappacea and K. lanceo-
lata occur also in forests; Giannini et al. 2011). In Santalales,
root-hemiparasitism has probably evolved in tropical trees
(Nickrent et al. 2010). Apart from the major clades (see be-
low), extant root-hemiparasitic Santalales comprise multiple
mostly small phylogenetic lincages whose species grow in
tropical forests. Of these, the family Aptandraceae is prob-
ably the largest group containing 34 predominantly forest
species; Nickrent et al. 2010). Another example includes the
genus Okoubaka (Cervantesiaceae) occurring in tropical for-
ests of Africa. Okoubaka aubrevillei, the largest hemipara-
sitic tree, is known to reduce the competitive pressure from
the surrounding vegetation by strong reduction of growth or
even killing the trees it parasitizes (Veenendaal et al. 1996).
Nevertheless, the major radiation events in root-hemipara-
sitic Santalales are associated with lineages of open habitats
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(Thesium with c. 350 species is the largest genus of Santala-
les, Olax with forty species; Nickrent et al. 2010). Such evo-
lutionary pattern implies that the fact that the root-hemipar-
asitic strategy per se provides the largest benefits in habitats
where light is available in abundance may apply also to San-
talales. Why Santalean root hemiparasitism evolved in tree
species growing in tropical forests, i.e. a habitat where light
deficiency is a limiting factor (Whitmore 1990), remains a
question. This might be answered by a detailed analysis of
habitat preferences and ecological niches of the forest spe-
cies of the small basal clades of Santalales.

The limitation by competition for light is largely over-
come in stem parasites which grow epiphytically. This is
clear in mistletoes which start their life as seedlings attached
to host branches and many species of which indeed grow in
forest canopy. By contrast, parasitic vines have a ground-
based, at least partially photosynthetic seedling, which prob-
ably underlies their occurrence in open habitats.

Root holoparasites and endophytic parasites occur mostly
in forest understory and arid habitats. Only a few of them
(e.g. some Orobanche species) grow in grasslands and oth-
er open habitats inhabited by root hemiparasites. The non-
photosynthetic parasites can thus be viewed as ecological
vicariants of root-hemiparasites at least in non-arid habitats
and the evolution of holoparasitism as a strategy to colonize
habitats not accessible to hemiparasites.

EVOLUTIONARY TRENDS IN FUNCTIONAL TRAITS

The evolution of parasitism in the angiosperms must have
started from a non-parasitic ancestor in all parasitic plant
lineages. It is now largely accepted that except in parasitic
vines the first parasitic stage was a root-hemiparasitic spe-
cies (Westwood et al. 2010, Naumann et al. 2013). This is
also supported by the evolutionary trends in Orobanchaceae
and Santalales, the only two extant monophyletic parasitic
plant lineages that comprise species of multiple functional
groups (table 1, fig. 2). It is likely that further evolution to-
wards more specialized forms was triggered by their ability
to colonize habitats unsuitable for their root-hemiparasitic
ancestors. This resulted in the repeated evolution of epi-
phytic mistletoes in Santalales (Nickrent et al. 2010) and of
root-holoparasitism in both Santalales (Su et al. 2015) and
Orobanchaceae (Bennett & Mathews 2006, McNeal et al.
2013).

Root hemiparasitism and stem parasitism are very suc-
cessful strategies measured by both the number of species
and their profound impact on plant communities and eco-
systems. Ecosystem effects are based on the primary con-
sequences of parasitism, but also on secondary effects such
as enrichment of ecosystems by nutrient-rich litter and con-
sequent enhancement of nutrient cycling (Phoenix & Press
2005, Cameron et al. 2005, Press & Phoenix 2005, Quested
et al. 2005, Prider et al. 2009, Watson 2009, Shen et al. 2010,
Li et al. 2012, Watson & Herring 2012, Demey et al. 2013,
Fisher et al. 2013). This contrasts with generally low spe-
cies richness recorded in lineages of root holoparasites and
endophytic parasites. Profound ecosystem effects of species
of these functional groups are also rather exceptional (well
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documented only in the case of Arceuthobium dwarf mistle-
toes; Shaw et al. 2004).

Such evolutionary patterns suggest that the greatest ben-
efits causing evolutionary radiations were associated with the
evolution of haustoria and connection to host xylem. These
evolutionary innovations, defining the initial phase of the
evolution of parasitism in land plants, released the hemipara-
sitic plants from nutrient limitation, which is likely to be the
major cause of their radiation and spread across the Earth.
Further constraints based on competition for light and seed-
ling establishment were addressed at least to some extent by
the evolution of stem parasitism and especially epiphytic
seedlings. This caused the great evolutionary success of mis-
tletoes as indicated by multiple origins of this growth form
and intense radiation in some mistletoe lineages. The evolu-
tion of host-induced germination, phloem connection, loss of
photosynthesis and tendency to grow endophytically is likely
also a reaction to establishment-related constraints. Although
these advanced evolutionary innovations allowed parasitic
plants to colonize habitats inaccessible to root hemiparasites,
they produced highly specialized forms (often host-specific)
with a limited evolutionary potential. Such multistep evolu-
tion associated with changes in ecology is also likely to trig-
ger the evolution of extreme morphological modifications
typical of many extant root-holoparasitic and endophytic
lineages.

CONCLUSION

This paper summarizes current knowledge on functional
biology of parasitic plants. Identification of key functional
traits and an analysis of their distribution in parasitic plant
lineages underpin a new functional classification of parasitic
plants into four principal groups: root hemiparasites, stem
parasites, root holoparasites and endophytic parasites. These
categories have been used in literature on parasitic plants,
but have never been combined in a comprehensive functional
classification. Despite being heterogeneous, these functional
groups allow each parasitic plant species to be classified into
one of them, which is the key advantage over previous con-
cepts based on model species biology. This functional clas-
sification is particularly useful in the global view on biology
of parasitic plants. Focussing on just one of the key traits un-
derlying biological differences within individual lineages or
genera might, however, be a more pragmatic approach on a
finer taxonomic scale.

I also attempted to relate the functional biology and clas-
sification of parasitic plants with their habitat preferences and
community ecology. In addition, an evolutionary scenario is
presented to explain diversity and functional trait patterns
observed in parasitic plants. Still, the ecological and evolu-
tionary hypotheses presented in this paper are only of an in-
formal nature. Although some formal modelling approaches
might seem available, the low number of independent origins
of parasitism in the angiosperms largely disqualifies their use
at the global perspective adopted in this review. Still, they
might be perfectly useful for detailed analyses within a par-
ticular parasitic plant lineage.

Parasitic plants are often considered a fascinating group
of organisms. That is, however, based on many fascinat-



ing stories on individual parasitic plant lineages displaying
unique biological features or evolutionary patterns rather
than on any general trends typical of the biology of parasitic
plants. This is why studying a particular parasitic plant spe-
cies is always important and might reveal unexpected natural
processes.

SUPPLEMENTARY DATA

Supplementary data are available at Plant Ecology and Evo-
lution, Supplementary Data Site (http://www.ingentacon-
nect.com/content/botbel/plecevo/supp-data), and consist of
the data table that served as the basis for the principal com-
ponent analysis (Excel spreadsheet).
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