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RESEARCH ARTICLE

Background and aims – Understanding the spatial patterns and associations of tree species with their 
conspecific and heterospecific neighbours is critical for sustainable management of their stands. This 
study assessed the intra- and interspecific spatial structure of six life stages in Afzelia africana, a keystone 
multipurpose and endangered tree species in a tropical savanna of Benin.
Material and methods – Three plots of 4 ha each were demarcated on three sites along a conservation 
gradient (hunting zone – core conservation zone). Individuals of A. africana (irrespective of their diameter 
at breast height) and heterospecific trees (dbh ≥ 5 cm) were mapped. Tree spatial patterns and associations 
were determined using univariate and bivariate pair correlation functions. The distance to the nearest 
neighbour was further used to assess tree-to-tree distance.
Key results – We found variable spatial patterns across sites. In the core zone where wildlife density is 
high, most life stages had a random distribution. In contrast, in the hunting zone where wildlife density is 
low, the species spatial distribution changed from a predominantly aggregative pattern during early stages 
to a less aggregative or random spatial pattern for very large adults. Most pairs of life stages showed neutral 
associations, except for small and large adults, which had positive association between themselves on two 
sites. We also found that A. africana tree spatial distribution was unrelated to heterospecific trees.
Conclusion – We suggest that bush fire, seed dispersion, predation, and local environment would have 
contributed to the observed patterns. 

Keywords – Pair correlation function; plant coexistence; plant-plant interactions; point pattern process; 
silviculture; tree-to-tree distance.
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INTRODUCTION

Understanding tree species spatial pattern is central in plant 
population and community ecology (Zhang et al. 2010; Chu 
et al. 2014; Liu et al. 2014). Tree spatial patterns primarily 
inform on how plants are positioned naturally to each other 
in forest stands (Yuan et al. 2018). They are important in 
explaining ecological processes, species coexistence, and 
community structure (Martínez et al. 2010). The extent to 

which plant individuals are aggregated or dispersed can also 
guide inference on how species use or share resources, and 
how they reproduce (Barot et al. 1999b; Condit et al. 2000). 
Finally, tree spatial patterns also provide vital information for 
managing natural stands through optimal planting techniques 
(Liu et al. 2014). 

There is evidence that plant spatial patterns are 
governed by interactive effects of biotic and abiotic factors 
(McIntire & Fajardo 2009), because these factors determine 
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neighbourhood competition, regeneration limitation, 
predation, habitat heterogeneity, and niche segregation. The 
abiotic factors are diverse, and include soil nutrient (Barot 
& Gignoux 2003), topographic variables (aspect, slope, 
elevation) (Bai et al. 2012; Chanthorn et al. 2013; Muvengwi 
et al. 2018), light requirement (Ledo et al. 2012), and fire 
occurence and intensity (Chu et al. 2014; Riginos et al. 
2015). Biotic factors include seed dispersal and predation 
(Barot et al. 1999b; Ledo et al. 2012), diversity of dispersers 
(Beckman & Rogers 2013; Harrison et al. 2013), herbivores 
feeding patterns and activities (Salako et al. 2019), 
conspecific and heterospecific competitive and facilitative 
interactions (Getzin et al. 2006; Metz et al. 2010; Uriarte 
et al. 2010; Jurinitz et al. 2013; Martínez et al. 2013), and 
association to ectomycorrhizal fungi (Sasaki et al. 2019). 
The magnitude of the importance of these factors is habitat 
and species specific.

Afzelia africana Sm. ex Pers. (Fabaceae – Detarioideae) 
is a keystone multipurpose tree species of Sudanian and 
Sudano-Guinean savannas, woodlands, and gallery forests in 
West Africa (Aubréville 1959; Arbonnier 2004). Its timber is 
of good quality and highly priced on international markets 
(Mensah et al. 2016). It is an important medicinal tree used 
to treat various ailments (Houehanou et al. 2011; Balima et 
al. 2018; Partey et al. 2018). Trees of A. africana are also 
pruned to feed livestock during the dry season, when the 
herbaceous layer is not available for grazing (Amahowe 
et al. 2018). Its leaves are reported to be one of the most 
palatable to livestock in West Africa (Onana & Devineau 
2002; Nacoulma et al. 2017). These multiple uses have 
resulted in the over-exploitation of the species, and this has 
considerably affected its natural populations, putting the 
species higher on the research agenda in West Africa. Afzelia 
africana is considered as vulnerable on the IUCN red list of 
threatened species (Hills 2020) but considered endangered in 
many countries (e.g. Benin) (Adomou et al. 2011).

Previous studies described the species population 
structure and associated drivers (Mensah et al. 2014; 
Assogbadjo et al. 2017; Nacoulma et al. 2017; Amahowe et 
al. 2018; Atanasso et al. 2019). There are consitent reports 
of poor natural regeneration and a recruitment bottleneck of 
the species even in protected areas (Sinsin et al. 2004; Bonou 
et al. 2009; Amahowe et al. 2018). Bationo et al. (2001) 
suggested this is linked to the sensitivity of the species 
seedling to fire, grazing, and drought stress that prevail in 
the Sudanian zone (Nacoulma et al. 2017; Amahowe et al. 
2018). Despite research efforts and valuable information 
existing on the species, we still know little about A. africana 
intra- (i.e. within the species populations) and interspecific 
(i.e. between these populations and their neighbouring 
heterospectic trees) interactions. No study has explicitly 
addressed the species population ecology from a spatial 
perspective, despite the fact that additional insights could 
still be drawn from analysing intra- and interspecific spatial 
relationships. 

The present study is guided by the need to understand 
how individuals of A. africana interact with their conspecific 
and heterospecific neighbours from the same and different 
life stages. Previous studies on tree spatial pattern suggest 
variation across life stages, with an overall trend of a 

less intraspecific aggregation in adult trees (Barot et al. 
1999a; Liu et al. 2014). A target species may also show 
neutral, positive, or negative spatial relationships with its 
heterospecific neighbours depending on their size (e.g. 
stem diameter class). Therefore, differences in species 
spatial patterns and associations should be considered 
when designing afforestation and developing conservation 
strategies (Chu et al. 2014).

Here, we used the pair correlation function approach, 
which is the derivative of Ripley’s popular K function 
(Wiegand & Moloney 2004) to analyse the spatial relationship 
of A. africana conspecific and hetereospecific trees in the 
Pendjari Biosphere Reserve in West Africa. Specifically, we 
assessed (i) the spatial relationship of A. africana individuals 
within each life stage, (ii) the spatial relationship of each 
life stage of A. africana with its conspecific neighbours 
from other life stages, (iii) the spatial relationship of each 
life stage of A. africana with its heterospecific neighbours 
of different size, (iv) and the pairewise distance between A. 
africana conspecific and heterospecific individuals within 
and across life stages.

MATERIAL AND METHODS

Study species

Afzelia africana is an evergreen tree, up to 40 m tall, with 
the trunk branchless for up to 20 m, usually straight and 
cylindrical, up to 150–200 cm in diameter, often with 
unequal, thick buttresses up to 1.5 m high (White 1986; 
Gérard & Louppe 2011). Fruits are thick and flat with bivalve 
pod of 10 to 15 cm long and 6 to 7 cm wide. Each pod 
contains up to ten ellipsoid or oblong-ellipsoid black seeds 
of 1.5 to 3 cm long. The seeds are covered by an orange aril 
at the base, which could play a role in their dispersal and 
predation (Bationo et al. 2000). Pods open violently to 
facilitate seed dispersal (Arbonnier 2004). 

The species is characteristic of the transition zone 
between tree savannas and dense dry forests, and of the 
dense semi-deciduous forest in the humid regions of West 
Africa, showing an adaptation to various climatic conditions. 
However, it is most common in areas with annual rainfall of 
more than 900 mm. In drier regions, it is limited to sites with 
deep, well-drained but moist soils and to termite mounds. 
The species can grow on various soil types characterized by 
sandy or ferralitic soils, steep slopes, as well as in depressions 
and in regularly flooded sites (Gérard & Louppe 2011). 
Regarding the light requirements, A. africana is considered 
as a non-pioneer light demander species (Hawthorne 1995). 

In the driest sites, A. africana is fairly fire resistant, but 
in dense forest it appears to be susceptible even to occasional 
fires. Data suggest that A. africana woodlands are being 
threatened and invaded by more fire-tolerant species when 
they are burned (Gérard & Louppe 2011). Early life stages, 
namely seedlings, are very sensitive to fire, browsing, and 
drought (Hawthorne 1995). Young A. africana trees often 
develop poorly due to damage caused by animals such as 
antelopes or livestock that feed on the foliage and damage 
the terminal buds. The seedling stage is also susceptible to 
fungal and grasshopper attacks (Gérard & Louppe 2011; 



364

Pl. Ecol. Evol. 154 (3), 2021

Mensah et al. 2020). As such, individuals that have their 
terminal buds out of reach of browsing animals in the dry 
season are more likely to survive. Seeds are dispersed by 
large birds such as hornbills, which feed on the arils (Bationo 
et al. 2000). Similar to observations in the sister species 
Afzelia bipindensis (Evrard et al. 2019), rodents such as 
rats (Proechimys spp.) seem to be the main predators of A. 
africana seeds (Bationo et al. 2000). Some stocks of its seeds 
have been found in dead termitaria. More than 30 species of 
ectomycorrhizal fungi have been recorded as associated with 
A. africana (Gérard & Louppe 2011).

Study area 

The Pendjari Biosphere Reserve (PBR) is located in the 
Sudanian zone between 0°30′–11°30′N and 0°50′–2°00′E in 
Benin. The PBR is divided into the Pendjari National Park 
(PNP, 2660 km2) which is the core zone of the reserve, i.e. 
completely protected and where only tourism activities are 
permitted, and the hunting zones of Pendjari (1750 km2) and 
Konkombri (251 km2) where hunting activities are permitted 
for tourists and occasionally for the local population. In the 
hunting zones, harvesting of non-timber forest products is 
also common. As a result, wildlife density is higher in the 
core zone (Sinsin et al. 2002, 2008). The hunting zones 
are further surrounded by a buffer zone where agricultural 
activities are controlled (Assédé et al. 2012). 

The climate is characterized by one rainy season (May–
October) and one dry season (November–April). Mean 
annual rainfall is 1000 mm with a mean annual temperature 
of 27°C. Afzelia africana is found in the reserve in both the 
hunting zones and the core zone, often as mixed natural 
stands. Most co-occuring species include Vitellaria 
paradoxa C.F.Gaertn., Pterocarpus erinaceus Poir., Lannea 
acida L., Detarium microcarpum Guill. & Perr., Terminalia 
avicennioides Guill. & Perr., Isoberlinia tomentosa 
(Harms) Craib & Stapf, Burkea africana Hook., Diospyros 
mespiliformis Hochst. ex A.DC., Tamarindus indica L., and 
Anogeisus leiocarpus (DC.) Guill. & Perr. (Mensah et al. 
2016; Atanasso et al. 2019). 

The PBR, especially the National Park, is also home to 
most West African wild fauna including savanna elephant, 
roan antelope, savanna buffalo, waterbuck, common duiker, 
reedbuck, oribi, baboons, and carnivores such as lion, 
cheetah, leopard, side-striped jackal, and spotted hyena 
(Sokpon et al. 2008). As a savanna ecosystem, prescribed 
burns are commonly applied as management intervention to 

improve the availability of herbaceous fodder to wildlife but 
also for tourism. These fires are set at the end of the rainy 
season, before the start of the dry season, and they are more 
frequent in the core zone than in the hunting zones (Grégoire 
& Simonetti 2010).

Sampling design and data collection

Three stands of A. africana populations in mixture with 
other species were identified and characterized along a core 
zone – hunting zone gradient in a preliminary study by 
Atanasso et al. (2019). These include Batia in the hunting 
zone of Pendjari, Bali in the core zone, and Bondjagou at 
the edge of the core zone. The stand in Bondjagou was the 
largest in terms of area (supplementary file 1). Density of 
adult trees (dbh ≥ 10 cm) of A. africana was twice as high 
in Batia and Bondjagou as in Bali. Density of regeneration 
(dbh < 10 cm) of A. africana was twice as high in Batia as 
in Bali and Bondjagou. Due to its location in a hunting zone, 
the site of Batia is more exposed to anthropogenic activities 
and has a smaller wildlife density than that of Bali in the 
core zone where wildlife density is higher. The Bondjagou 
site being at the edge of the core zone is characterized by 
intermediate wildlife density and human activities. Dominant 
heterospecific species differ among the sites (supplementary 
file 1). More details regarding differences in the floristic, 
density, and structural characteristics of the three sites can be 
found in Atanasso et al. (2019).

We established a 4 ha (200 m × 200 m) plot in each 
of the three stands for data collection. To facilitate tree 
identification and mapping, each plot was sub-divided into 
four contiguous bands of 50 m × 200 m. All individuals of 
A. africana (irrespective of their diameter at breast height) 
and heterospecific trees (dbh ≥ 5 cm, see supplementary 
file 2) were mapped. Starting with a reference tree, we 
measured distance between nearest neighbouring trees, dbh, 
total height, azimuth, and slope. Dbh was measured with Pi 
ribbon; tree total height was calculated using trigonometry 
relationship based on the distance from measurement spot to 
the tree (using penta-decameter) and the angle of its base and 
top (using clinometer); the azimuth was determined with a 
compass (Salako et al. 2019).

Data analysis

Individuals of A. africana and heterospecific species were 
categorized, on the basis of their dbh in the following life 
stages: seedlings (dbh ≤ 1 cm); saplings (1 cm < dbh ≤ 5 

Table 1 – Number of individuals mapped by site. †The first number corresponds to the number of solitary seedlings (respectively solitary 
saplings) and the second number corresponds to the number of clumps of seedlings (respectively clumps of saplings).

Site Species Seedlings† Saplings† Juveniles Small adults Large adults Very large 
adults

Batia (hunting zone)
A. africana 38/31 49/122 4 92 93 14
Heterospecific 14 182 80 29

Bondjagou  
(edge of core zone)

A. africana 37/58 7/9 2 43 102 67
Heterospecific 2 37 50 8

Bali (core zone)
A. africana 28/64 4/3 0 24 64 27
Heterospecific 5 82 24 0
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Figure 1 – Cartography of individuals mapped in the three sites. A. Site of Batia (hunting zone). B. Site of Bondjagou (edge of the core zone). 
C. Site of Bali (core zone). aaf stands for A. africana and ht for heterospecific.

cm); juveniles (5 cm < dbh < 10 cm); small adults (10 ≤ dbh 
≤ 25 cm); large adults (25 < dbh ≤ 40 cm); and very large 
adults (dbh > 40 cm) (Kanagaraj et al. 2011; Zhu et al. 2018). 
Heterospecific trees were only considered from the juvenile 
stage onward, resulting in four categories. We used these 
categories based on the hypothesis that spatial relationships 
would vary with tree size (Zhu et al. 2018). The number of 
individuals mapped per life stage on each site is summarized 
in table 1. Chi-square tests were used to examine whether 
the demographic structure of A. africana and that of other 
species was independent of the site.

The data on distance, azimuth, and slope were converted 
into x and y coordinates using Arpent 1.3.d. software 
(Lejeune 2001) (see fig. 1). Spatial relationships of trees were 
analyzed using the pair correlation function. The global pair 
correlation function g for a point pattern process of two types 
of objects i and j at a distance r is given by the following 
formula (Baddeley & Turner 2005; Baddeley et al. 2015): 

( )
( )

g r r
K r
2,
,

i j
i j

r
=
l
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where K’i,j(r) is the derivative of the Ripley’s K function 
Ki,j(r) (Ripley 1981). The spatial relationship between a 
life stage j (e.g. seedlings) and a life stage i (e.g. very large 
adults, taken as reference) in a radius r is given by gi,j(r); 
when i = j, the analysis is univariate, and bivariate otherwise 
(Barot et al. 1999a; Baddeley & Turner 2005). 

The above function was used to test whether the 
distribution of each mapped life stage of A. africana was 
random, aggregative, or regular (in the case of univariate 
spatial analysis), or whether the relationship between two life 
stages of A. africana (or between a life stage of A. africana 
versus a life stage of heterospecific trees) suggests spatial 
association i.e. positive relationship, repulsion i.e. negative 
relationship, or independence i.e. neutral relationship (in the 
case of bivariate spatial analysis) (Stoyan & Stoyan 1994).

The significance of any observed pattern that deviates 
from the null model of complete spatial randomness 
(univariate case) or spatial independence (bivariate case) 
was determined using the confidence envelopes based on 500 
Monte Carlo simulations of the null model (Diggle 2003). 
For a given scale r, when g(r) falls outside the simulation 
envelope (i.e. ≠ 1), the null hypothesis of random distribution 
(and spatial independence in case of bivariate analysis) is 
rejected. For a univariate point pattern, g(r) = 1 indicates 
a random distribution or no pattern, while g(r) > 1 or g(r) 
< 1 indicates clumping and regularity, respectively. For a 
bivariate analysis, gi,j(r) = 1 indicates a spatial independence 
whereas gi,j(r) > 1 or gi,j (r) < 1 indicates a positive 
association (attraction) or a negative association (repulsion), 
respectively. The spatial analyses were conducted with 
the R package spatstat (Baddeley & Turner 2005) in the R 
statistical software v.3.3.3 (R Core Team 2017).

To assess the tree-to-tree distance, the nndist and nncross 
functions were used to compute the distance from each 
point to its nearest neighbour for univariate and bivariate 
point pattern analysis, respectively. Because the function 
gi,j is not symmetric (Barot et al. 1999a), both directions (i 
vs j and j vs i) were explored. Linear mixed effect models 
with a random intercept structure were fitted using lmerTest 
package (Kuznetsova et al. 2017) to test how the pairwise 
distance between any two individuals varied with the life 
stage. Explanatory variables in these models were “life 
stage” (fixed factor) and “site” (random factor). One model 
was run for univariate point pattern where the factor “life 
stage” refers to the life stages of A. africana. In the case of 
bivariate patterns, one model was run for each focal life stage 
(supplementary file 4). Here, factor “life stage” refers to life 
stages of A. africana in the case of conspecific bivariate 
point patterns, and to life stages of other species in the case 
of heterospecific bivariate patterns.

RESULTS

Demographic structure of A. africana and other tree 
species

Density of A. africana was higher in the hunting zone than in 
the two other sites (table 1). Density of heterospecific trees 
also showed a relatively similar trend. There was significant 
difference (Chi-square test, χ2 = 208.697, d.f. = 10, p < 0.001) 

in the size class distribution of A. africana among sites 
(supplementary file 3A). The proportions of large and very 
large Afzelia adults were higher in the core zone (52%) and 
edge of the core zone (43%) than in the hunting zone (24%). 
Similarly, the proportion of Afzelia seedlings was higher in 
the core zone (29%) and edge of the core zone (43%) than 
in the hunting zone (13%). No juvenile was found in the 
core zone while its proportion in the two other sites was less 
than 1%, clearly showing a bottleneck of recruitment at this 
stage. The size class distribution of individuals of A. africana 
also differed significantly (Chi-square tests, p < 0.0001, see 
χ2 values for all three sites in supplementary file 3B) from 
that of other species for all sites. Together, large and very 
large Afzelia adults were dominant (> 50%) in all stands 
(supplementary file 3B). There were also more individuals of 
A. africana than the sum of all other species in the core and 
at the edge of the core zone, 68.8% and 50.9%, respectively 
(when considering only juveniles, small, large, and very 
large adults) (table 1).

Spatial pattern of A. africana conspecific and 
heterospecific trees

Figure 1 shows the location of the trees within each plot 
along with their life stage. The univariate analyses revealed 
that all life stages of A. africana had a random distribution 
at the edge of the core zone and in the core zone, except for 
small and large adults, which showed aggregative patterns 
within 0–6 m and 0–25 m radius, respectively, at the edge 
of the core zone (table 2). However, in the hunting zone, 
seedlings, saplings, small adults, and large adults of A. 
africana had aggregative distributions within 0–6 m, 2–8 m, 
0–40 m, and 0–3 m radius, respectively, whereas very large 
Afzelia adults exhibited a random spatial distribution (table 
2). The univariate spatial pattern could not be assessed for 
juveniles due to insufficient number of individuals (table 1).

The intraspecific bivariate analyses revealed spatial 
independence between all pairs of life stages of A. africana 
on all sites, except for small and large adults which showed 
a positive association at the edge of the core zone and in the 
hunting zone (table 2). 

There was a spatial independence between individuals of 
A. africana and its heterospecific trees, irrespective of the life 
stages on all sites (table 3). An exception was found in the 
hunting zone where small adults had a positive association 
with heterospecific juveniles within 20–25 m radius and 
heterospecific large adults within 0–5 m radius (table 3). 

Distances to nearest neighbours

Distance within life stages of A. africana – The distance 
to nearest neighbours varied significantly across life stages 
for the pooled data (p < 0.001, supplementary file 4) but also 
for each site (fig. 3A–C). For the pooled data (fig. 2D), on 
average, tree-to-tree distances were higher for regenerations, 
particularly juveniles, than for adult trees. Small and large 
adults were the closest individuals (fig. 2D). However, some 
variations were found across sites (fig. 2A–C). For example, 
tree-to-tree distance was higher among juveniles in the 
hunting zone (48.36 ± 5.04, n = 4) than at the edge of the 
core zone (1.8 ± 0, n = 2) (fig. 2B, C). Conversely, the tree-
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Stages of A. africana 
(subject i)

Stages of A. africana (subject j)
Seedlings Saplings Juveniles Small adults Large adults Very large adults

Site of Batia (hunting zone)
Seedlings a (0–6) n n n n n
Saplings NA a (2–8) n n n n
Juveniles NA NA NA n n NA
Small adults n n n a (0–40) A (2–30) n
Large adults n n n A (2-25) a (0–3) n
Very large adults n NA n n n NA
Site of Bondjagou (edge of the core zone)
Seedlings n n NA n n n
Saplings NA NA NA NA NA n
Juveniles NA NA NA NA n n
Small adults n n n a (0–6) A (0–10) n
Large adults n n n A (0–10) a (0–25) n
Very large adults n n NA n n n
Site of Bali (core zone)
Seedlings n n n n n n
Saplings NA n NA NA NA NA
Juveniles NA NA NA NA NA NA
Small adults n n NA n n n
Large adults n NA n n n n
Very large adults n n n n n n

Table 2 – Univariate (within a life stage) and bivariate (between pairs of life stages) spatial pattern of A. africana in three sites in the PBR. 
Bold font indicates univariate analyses and regular font intraspecific bivariate analyses. For the bivariate analyses, stages i were the focal 
points; a: aggregative; A: association; n: no pattern/spatial indepence; NA: not applicable. Values in parentheses are the radi within which 
the pattern is observed.

Stages of 
heterospecific trees 
(subject i)

Stages of A. africana (subject j)

Seedlings Saplings Juveniles Small adults Large adults Very large adults

Site of Batia (hunting zone)
Juveniles n n NA A (20–25) n NA
Small adults n n n n n n
Large adults n n n A (0–5) n n
Very large adults n n n n n n
Site of Bondjagou (edge of the core zone)
Juveniles NA NA NA NA NA NA
Small adults NA NA n n n n
Large adults n NA n n n n
Very large adults n n NA NA n n
Site of Bali (core zone)
Juveniles NA NA NA NA NA NA
Small adults n NA NA n n n
Large adults n n NA n n n
Very large adults n n NA n n n

Table 3 – Interspecific bivariate spatial associations between A. africana and its heterospecific trees in three sites in the PBR. Heterospecific 
trees (i) were used as reference tree; A: association; n: random; NA: not applicable. Values in parentheses are the radi within which the pattern 
is observed.
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to-tree distance among saplings was four times shorter in the 
hunting zone (12.90 ± 1.81, n = 171) than at the edge of the 
core zone (53.2 ± 7.38, n = 16) and in the core zone (57.0 ± 
30.1, n = 7) (fig. 2A–C).
Distance between pairs of life stages of A. africana – 
Tree-to-tree distances of individuals of A. africana to their 
conspecific seedlings (focal life stage) varied significantly 
across life stages (p < 0.001, supplementary file 4, fig. 3A). 
Similar results were observed for saplings (supplementary 
file 4, fig. 3B), juveniles (supplementary file 4, fig. 3C), 
small adults (supplementary file 4, fig. 3D), large adults 
(supplementary file 4, fig. 3E), and very large adults 
(supplementary file 4, fig. 3F). In particular, small adults 

and large adults were often the closest to individuals of other 
life stages (fig. 3). In contrast, saplings and juveniles were 
often the most distant to individuals of other stages (fig. 3). 
Saplings and juveniles were respectively two to five times 
more distant to large and very large adults than seedlings 
(fig. 3E, F).
Distance of A. africana individuals to heterospecific 
trees – Tree-to-tree distance of A. africana seedlings to 
heterospecific trees was significantly dependent on the stage 
of the heterospecific trees (p < 0.001, supplementary file 4, 
fig. 4A). Similar results were observed for other life stages 
(supplementary file 4, fig. 4B–F). The highest distances 
were to heterospecific juveniles followed by very large 
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Figure 2 – Mean tree-to-tree distances among individuals of A. africana across sites and for pooled sites: variation across life stages. A. Site 
of Bali (core zone). B. Batia (hunting zone). C. Site of Bondjagou (edge of the core zone). D. All sites together. Seed = seedlings, sapl = 
saplings, juve = juveniles, smad = small adults, lgad = large adults, vlad = very large adults.
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Figure 3 – Mean tree-to-tree distances of A. africana individuals of a stage i (A. Seedlings. B. Saplings. C. Juveniles. D. Small adults. E. 
Large adults. F. Very large adults) to their conspecific neighbours of stage j (seed = seedlings; sapl = saplings; juve = juveniles; smad = small 
adults; lgad = large adults; vlad = very large adults).
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Figure 4 – Mean tree-to-tree distances of A. africana individuals of a stage i (A. Seedlings. B. Saplings. C. Juveniles. D. Small adults. E. 
Large adults. F. Very large adults) to their heterospecific neighbours of stage j (juve = juveniles; smad = small adults; lgad = large adults; 
vlad = very large adults).
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heterospecific adults. The shortest distances were to small 
and large heterospecific adults, irrespective of the life stages 
of A. africana (fig. 4). Irrespective of their size, individuals 
of A. africana are often closer to small heterospecific trees 
than to larger ones (fig. 4).

DISCUSSION

Demographic structure of A. africana

Our results showed higher A. africana tree density in the 
hunting zone as compared to the edge of the core zone and 
the core zone, which could be linked to the low density of 
wildlife among which elephants (Atanasso et al. 2019). Our 
findings of less than 1% juveniles in all sites also support 
previous studies that consistenly reported a recruitment 
challenge at juvenile stage (Sinsin et al. 2004; Bonou et 
al. 2009; Amahowe et al. 2018). Similar findings have 
been reported for Marula trees in South Africa where high 
elephant pressures have caused its sharp decline (Helm 
& Witkowski 2012). For A. africana, this trend has been 
attributed to the sensitivity of the species seedling to fire, 
grazing, and drought stress that prevail in the Sudanian zone 
(Nacoulma et al. 2017; Amahowe et al. 2018). Potential 
effects of several other factors such as natural enemies and 
competition have been extensively discussed in Atanasso et 
al. (2019) and Mensah et al. (2020).

Intraspecific spatial patterns 

We found evidence for variable spatial patterns across sites. 
All life stages had random distribution in the core zone 
and at the edge of the core zone (except small and large 
adults that showed aggregative distribution). In the hunting 
zone, however, all life stages except for very large adults, 
had aggregative distribution. Browsing and trampling by 
elephants and other mammals, seed dispersion and predation, 
local topography, prescribed burns, and soil conditions can 
be offered to explain the among-sites variation. 

The hunting zone has lower wildlife density, hence is 
exposed to lower animals browsing and trampling (Assédé 
et al. 2012). This low wildlife activity would entail limited 
disturbance, thereby favouring the survival of the species 
individuals. Guy (1989) and Tchamba & Seme (1993) 
reported that adult trees of A. africana are appreciated 
food species by elephants during their grazing, debarking, 
breaking, and uprooting activities. We actually found 
several signs of herbivore activity (e.g. broken branches, 
debarking, and grazing) on individuals of A. africana in the 
core zone, especially on young individuals, during our field 
investigations (also see Tehou et al. 2012). 

The aggregative patterns observed for seedlings and 
saplings in the hunting zone can be attributed to high fruit/
seed rain combined with reduced activities of predators 
(Jansen & Zuidema 2001). Hunting and anthropogenic 
activities in this zone might have also reduced the density of 
dispersers, and hence seed dispersal of A. africana (Trolliet et 
al. 2019). Limited seed dispersal and limited seed predation 
are therefore plausible explanations of the aggregative 
patterns of seedlings and saplings. This pattern seems to 

have been maintained till the large adult stage, although 
with reduced intensity. Dispersal by birds and predation by 
rodents (Bationo et al. 2000), which are presumably higher 
in the core zone and at its edge, likely explain why we found 
a random spatial pattern across life stages for these two sites.

Environment heterogeneity has also been suggested to 
explain aggregative patterns in plants (Perry et al. 2009; 
Le et al. 2016). This might also be true in the hunting zone. 
Indeed, the greater range of the slope in the hunting zone (0–
60%) compared to others sites (0–45%, table 1) might have 
favoured microtopographic features, such as depressions and 
runnels, creating seed traps that would have played a role 
in the maintenance of the aggregated structure (Chu et al. 
2014). 

Differences in historical frequency of fires across the 
sites could also partly contribute to the aggregative pattern 
observed in the hunting zone. Indeed, in areas where fires 
occur irregularly such as in the studied hunting zone, small 
trees tend to clump together, while in a continuous fire 
regime, small to large adult trees tend to exhibit random 
distributions due to fire-induced mortality (Svátek et al. 
2018). 

We also found spatially independent relationships 
between pairs of life stages of A. africana on all sites. 
Exception was noted between small and large adults that 
exhibited positive spatial relationships in the hunting 
zone and at the edge of the core zone, with larger clumps 
(2–30 m) in the hunting zone than at the edge of the core 
zone (0–10 m). This result suggests that intraspecific 
interactions across life stages may change across sites for 
conspecific individuals. It further highlights that A. africana 
can tolerate association with its conspecific of various size. 
There are insights that A. africana is associated with diverse 
ectomycorrhiza fungi (ECM) (Gérard & Louppe 2011). Even 
if no actual data exist on patterns of ECM across the study 
sites, this association can also contribute to some extent to 
the observed differences in life stages association across 
sites. In some ECM-associated species, associations between 
different life stages could actually result in large clumps of 
adults (Sasaki et al. 2019).

Interspecific spatial patterns 

Our results showed spatial independence between pairs of 
life stages of A. africana and heterospecific neighbours in all 
sites except some marginally positive associations of small 
adults of A. africana with heterospecific juveniles and large 
adults in the hunting zone. Our data is however rather limited 
and these positive associations have to be tested with more 
data, for example by replicating plots in the studied sites. 
The independence of the distribution of A. africana vis-à-
vis its heterospecific neighbours suggests that A. africana 
can be successfully grown in mixed plantations with its 
co-occurring species, as far as the pool of species planted 
share the same niche. In a previous studies, Atanasso et al. 
(2019) identified the ten most co-occurring species with A. 
africana in the Pendjari Biosphere Reserve as V. paradoxa, 
P. erinaceus, L. acida, D. microcarpum, T. avicennioides, I. 
tomentosa, B. africana, D. mespiliformis, T. indica, and A. 
leiocarpus. Mensah et al. (2014) also reported other species 
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such as Boswellia dalzielii Hutch., Dialium guineense Willd., 
and Mimusops andongensis Hiern as co-occurring with A. 
africana in a more humid semi-deciduous forest in southern 
Benin. 

In our study, we pooled all heterospecific trees 
(supplementary file 2) and did not consider species-specific 
features, and this could be viewed as a limitation. Indeed, the 
spatial pattern may be different if we looked for particular 
species among heterospecific trees. Studies that separate 
each heterospecific species may provide additional insights 
and refine the conclusions of the present study.

Intra- and interspecific tree-to-tree distance

The scarcity of juveniles resulted in individuals of this 
stage being the most distant in the studied populations. 
The observed distances between individuals of each life 
stage are consistent with the trend in tree density; small and 
large adults were the most common and then the closest to 
each other. The Janzen-Connell hypothesis predicts that 
offspring standing far from their mother trees are likely to 
escape damage and successfully recruit. Therefore, saplings 
and juveniles are expected to be more distant to large-sized 
trees than seedlings are to large-sized trees (Janzen 1970; 
Connell 1971). We found that saplings and juveniles were 
respectively two to five times more distant to large and 
very large adults than seedlings. This is consistent with the 
Janzen-Connell hypothesis, as also reported by Amahowe 
et al. (2019) for A. africana in the W National Park, Benin. 
Nevertheless, we believe a more detailed study on survival 
chance of seedlings, saplings, and juveniles is needed to 
draw reliable conclusions.

Conclusion and implications for management 

This study reveals that the A. africana tree spatial pattern 
varies from aggregative to random across sites, possibly due 
to a number of biotic and abiotic conditions that are site-
specific. From a perspective of interspecific relationships, 
A. africana has generally showed a neutral relationship with 
heterospecific neighbours, suggesting that the species can 
be planted with other species in mixed plantations, e.g. V. 
paradoxa and P. erinaceus, which are among its most co-
occurring species. However, the observed patterns in this 
study might not always apply to other A. africana natural 
habitats, e.g. dry forests, deciduous forests, or gallery forests, 
where competition for light is more intense. Long-term 
experiments would be needed to advance our understanding 
of the interactions of A. africana with its heterospecific 
neighbours and refining management recommendations. By 
encountering only six juveniles of the species, the study also 
corroborates previous findings on the species recruitment 
challenge, which implies a need for an artificial regeneration 
strategy and the enrichment of its natural stands. In such 
a strategy, particular attention should be given to the 
protection of the planted seedlings against biotic and abiotic 
stressors (see Mensah et al. 2020 for extensive discussion 
on data from a two-year monitoring in the study sites) to 
ensure a successful recruitment. Our findings also suggest 
that for artificial plantations of A. africana, careful attention 

should be given to seedlings and saplings to ensure that they 
successful recruit to the juvenile stage.
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